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Executive Overview 
Genomics is revolutionizing our understanding of human biology and 
contributing to the growth of precision medicine. But the sheer amount of data 
associated with genomics research has historically limited the pace at which new 
insights are obtained. It took 13 years and USD 3 billion to sequence the first 
human genome; as recently as 2012, only 69 whole human genomes had been 
sequenced. Yet, recently researchers at University of Toronto launched a massive 
project to sequence the genomes of 10,000 people per year.1 

Intel and the Broad Institute of MIT and Harvard are at the forefront of the effort 
to accelerate genomics analysis and the benefits it can produce. Together, Intel 
and Broad have introduced an integrated hardware and software solution to run 
Broad’s popular Genome Analysis Toolkit* (GATK*) faster, at unprecedented scale, 
and with easier deployment. It used to take six weeks to generate a database 
from 2,300 genomes. Now, using the Broad-Intel Genomics Stack* (BIGstack*), a 
database containing 5x more information can be generated in only two weeks.2 

BIGstack is a game-changing, end-to-end integrated hardware and software 
package. With common, validated reference designs that use the latest-
generation Intel® Xeon® Scalable processors, Intel® Arria® 10 Field Programmable 
Gate Array (FPGA) PCIe* cards, Intel® Omni-Path Architecture (Intel® OPA), 
and Intel® 3D NAND Solid State Drives (Intel® SSDs), BIGstack can help ease 
the complexity of running the genomics analysis pipeline (specifically, Broad 
Institute’s production-worthy Best Practices workflows) while dramatically 
speeding up the analysis process. 

This paper demonstrates how a BIGstack-based platform that uses the latest 
Intel Xeon Scalable processors and Intel 3D NAND SSDs achieves a throughput 
of up to 5 whole genomes and more than 100 whole exomes per day per node. 
Intel® FPGA technology further speeds up the individual sample analysis by up 
to 2.2x for whole genomes at a lower memory cost compared to prior-generation 
Intel® Xeon® processor for Broad’s GATK Best Practices. Information is provided 
about tools, technologies, optimizations, and methodology, as well as details 
about latency, throughput, and utilization of CPU, memory, and disk resources. 
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Learn how the Broad-Intel Genomics Stack* (BIGstack*), running on the latest-
generation Intel® Xeon® processors and other Intel® technologies, can improve 
latency and throughput—powering new insights quickly

The highly-optimized 
BIGstack* with Intel® Xeon® 
Scalable processors and Intel® 
SSDs delivers an impressive 
throughput of up to 5 whole 
genomes per day per node, 
while using Intel® FPGA 
technology to accelerate the 
analysis by up to 2.2x over 
prior-generation Intel® Xeon® 
processors and up to 1.8x over 
hard drives.
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Introduction
The Broad-Intel Genomics Stack* (BIGstack*) is an end-to-
end, optimized hardware and software solution for analyzing 
genomic data. It provides a way to run pre‑packaged, optimized 
workflows, including the Genome Analysis Toolkit* (GATK*) Best 
Practices workflow from the Broad Institute. These complex 
workflows target specific scientific questions of interest to 
the genomics community, and support data analysis using 
commonly available analysis tools.

BIGstack includes two components developed by Intel: 
•	 Genomics Kernel Library* (GKL*) accelerates commonly used, 

compute-intensive genomics kernels on Intel® architecture.4 
•	 GenomicsDB* provides a scalable and efficient means to 

store genomic variants.5 

In addition to GATK6, BIGstack also supports other open 
source libraries of genomic analysis tools, such as Picard*7, 
BWA*8, and Samtools*9. These tools perform a wide 
variety of tasks, from sorting and fixing tags to generating 
recalibration models. Users specify the files to be analyzed, 
what tools they want to use, and the order in which the 
execution engine (Cromwell*)10 performs the tasks using 
Workflow Description Language (WDL)11 files. WDL is a 
standard developed by the Broad Institute specifically for 
genomic analysis and is designed to be easy to use. Intel is 
providing Broad-generated WDL workflows so users can 
quickly and easily deploy Broad’s high-quality pipelines. With 

WDL and Cromwell, users can also implement their unique 
pipelines using whatever tools and steps best meet the user’s 
requirements. Intel will continue to expand the WDL offering, 
providing additional pipelines and flexibility in the future.

The following sections describe that hardware and software 
used in this paper, followed by the Results section, which 
provides a thorough analysis of the performance across a 
number of different hardware configurations. The results 
clearly indicate that the latest-generation Intel® Xeon® 
Scalable processor, combined with Intel® Arria® 10 FPGAs 
(field programmable field arrays) and Intel® 3D NAND Solid 
State Drives (Intel® SSDs) featuring Non-Volatile Memory 
Express* (NVMe*), provides the lowest latency and best 
throughput for Broad’s Best Practices workflow, compared to 
prior generations of processor and hard disk drives (HDDs).

Hardware 
Table 1 provides configuration information for the nodes 
used in the benchmarking. The first two columns represent 
the latest-generation Intel Xeon Scalable processor platform 
across all system components. The leftmost column utilizes 
an Intel Arria 10 FPGA PCIe* card, and includes one fewer SSD 
due to space constraints as compared to the middle column. 
The rightmost column is configured using the fastest prior-
generation Intel® Xeon® processor. The latest-generation 
Intel 3D NAND SSD-based storage configuration 1 is used 
for all SSD experiments, and the hard drive configuration 
described as storage configuration 2 is used for all hard drive 
experiments.

Workflows and Data
The GATK Best Practices workflow is available through the Broad 
Institute. For the experiments in this paper, we used two versions 
of the Single-Sample Germline Variant Calling workflow12: 
•	 A purely GATK v3.8-based workflow for the Whole Exome 

Sequencing (WES) data 

•	 A hybrid workflow that uses both GATK v.3.8 and GATK v4.0 
for the Whole Genome Sequencing (WGS) data 
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Table 1. Benchmarking Configurations

 Latest-Generation Platform Configuration 
with Intel® Arria® 10 FPGA PCIe* Card

Latest-Generation  
Platform Configuration

Prior-Generation  
Platform Configuration 

Number of Nodes 1 1 1
Chassis R2308WFTZS R2308WFTZS R2308WTTYS
System Board S2600WFT S2600WFT S2600WTTR
Processor 2 x Intel® Xeon® Platinum 8180 Processor 

with 28 cores each (56 total)
2 x Intel Xeon Platinum 8180 Processor 
with 28 cores each (56 total)

2 x Intel® Xeon® Processor E5-2699 v4 
with 22 cores each (44 total)

FPGA 1 x Intel Arria 10 FPGA PCIe Card NA NA
Memory 8/16 x 32 GB 2666 REG ECC 

(Total 256/512 GB)
16 x 32 GB 2666 REG ECC 
(Total 512 GB)

16 x 32 GB 2400 REG ECC  
(Total 512 GB)

Storage 
Configuration 1

7 x Intel® SSD Data Center P4600 Series  
2 TB HHHL PCIe* (Total 14 TB)

8 x Intel SSD Data Center P4600 Series  
4 TB HHHL PCIe (Total 32 TB)

8 x Intel SSD Data Center P4600 Series  
4 TB HHHL PCIe (Total 32 TB)

Storage 
Configuration 2

NA 8 x Western Digital*  
6 TB SAS HDD 3.5" (Total 48 TB)

NA

ECC – Error-correcting code; FPGA – field programmable gate array; HDD – hard disk drive; HHHL – half height, half length; SAS – serial attached SCSI; SSD – Solid State Drive
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Both versions of the Single-Sample Germline Variant Calling 
workflow effectively stream the per-sample input data to 
pre‑processing and variant calling segments of the workflow 
to produce a single gVCF file, and are implemented using WDL. 
Appendix B and Appendix C describe the flow of these two 
workflows in detail. 

The unmapped WGS and WES BAM datasets used for both 
workflows are listed in Table A1 and Table A2 in Appendix A. 
The reference and resource files used for this workflow are 
the HG38 bundle: 
•	 Inputs:

-- HG38 reference genome
-- VCF files: DBSNP, Mills Indels, HapMap, Omni, 
1000G Phase SNPs

-- WGS and WES interval files
•	 Outputs:

-- Processed VCF files (produced by the MergeVCF step of 
the Single-Sample Germline Variant Calling workflow)

Tools and Technologies
Table 2 lists the genomic tools and technologies used by the 
Single‑Sample Germline Variant Calling workflow. 

Appendix E provides more information on the tools and 
technologies used by the Single-Sample Germline Variant 
Calling workflow.

Experimental Methodology
Figure 1 illustrates the environment setup used for the 
experiments in this paper. The workflows are submitted 

to the Cromwell (v28) execution engine, which uses the 
HTCondor backend (v8.6.1)13 to allocate workflow tasks 
among available compute resources. 

The workflows are configured and optimized for lower latency 
and higher throughput. For the latency experiments, the tasks 
that benefit from parallelism are optimized for speed. For the 
throughput experiments, the tasks are given fewer resources, 
which enables simultaneous execution of more tasks on the 
node. 

The benchmarking described in this paper (see the Results 
section) focuses on the following metrics for the Single-Sample 
Germline Variant Calling in Broad’s Best Practices workflow:

•	 Latency:
-- Single workflow latency comparison benchmark between 
Intel SSDs with NVMe and HDDs on WES and WGS.

-- Single workflow latency comparison benchmark between 
the platform based on the prior-generation Intel® Xeon® 
processor E5-2699 v4 and a platform based on the new 
generation Intel® Xeon® Platinum 8180 processor with 
Intel® FPGA technology on WES and WGS. 

•	 Throughput:
-- Comparison to estimate the number of whole genomes 
and whole exomes processed in a day using Intel SSDs 
and HDDs.

-- Comparison to estimate the number of whole genomes 
and whole exomes processed in a day using the older 
platform based on the Intel Xeon processor E5-2699 v4 
and the platform based on the new generation Intel Xeon 
Platinum 8180 processor. 

Results for CPU, memory, and disk utilization are also 
provided for these experiments.

Results
In this section, we discuss the performance of the 
Broad Institute’s GATK Best Practices workflow on the 
three hardware platforms described in the Hardware 
section. Results are provided for latency and throughput 
comparison across CPU generations, and across different 
storage configurations. CPU utilization, memory 
utilization, and read/write performance graphs and 
in-depth analysis are provided for the Hybrid workflow 
running the WGS dataset.

Table 2. Tools and Technologies Versions 

Tool
Version for Whole Exome Sequencing (WES)  
GATK 3.8 Workflow

Version for Whole Genome Sequencing (WGS) 
Hybrid Workflow

BWA* 0.7.15-r1140 0.7.15-r1140

Picard* 2.8.3-SNAPSHOT 2.12.0-SNAPSHOT

Samtools* 1.3.1, using htslib 1.3.1 1.3.1, using htslib 1.3.1

GATK* 3.8-1 3.8-1 and 4.0 beta.5

Python* 2.7 2.7

Genomic Kernel Library* 0.6.0 0.6.0

Java* OpenJDK build 1.8.0 151-b12 OpenJDK build 1.8.0 151-b12

User

Workflow Description 
Language File

Cromwell*
using HTCondor* Backend

Compute Resources

Applications

Datasets

Workflows

File System

Figure 1. Experimental setup.
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LATENCY

In this section we focus on latency experiments for a single 
WGS and WES workflow. To maximize the CPU utilization, 
we extensively profiled and tuned each of the stages in 
the workflow, and set the CPU and memory requirements 
accordingly. SamToFastqAndBwaMemandMba and 
SortSampleBam stages consisting of BWA-MEM and Samtools 
Sort applications scale well with the number of threads; hence, 
these workflow stages are allocated all the available cores on 
the system (that is, 56 and 44 threads/cores for the Intel Xeon 
Platinum 8180 processor and Intel Xeon processor E5-2699 
v4 experiments, respectively). The BWA-MEM application is 
allotted 54 threads for the Intel Xeon Platinum 8180 processor 
and 42 threads for the Intel Xeon processor E5-2699 v4 to 
accommodate the other applications running simultaneously in 
the SamToFastqAndBwaMemAndMba stage. Because all other 
stages are bound by either memory or disk, we only allocate to 
them one thread/core. 

Furthermore, to enable a fair comparison between the 
hardware capabilities of SSDs and HDDs, we made several 
HDD-specific workflow and system configuration optimizations 
that were not implemented on the configurations that utilized 
SSDs. These HDD-specific optimizations include disabling 
swap space for the workflow applications and increasing the 
total memory to SortSampleBam as well as the memory to 
each thread for the SortSampleBam. 

For the latency analysis, we focus on WGS workflows to 
capture bottlenecks. WES data is much smaller than WGS data 
(5.9 GB versus 64 GB), so system bottlenecks get masked. 
For example, for WES workflows, the data can easily fit in 
the 512 GB of memory on the system, so the CPU is only 
blocked by disk for a short time at the beginning and end of 
each workflow task. Some of the workarounds that had to be 
employed for WGS workflows, when the allotted memory size 
was exceeded (which led to job resubmission), did not need to 
be employed for WES data. In addition, the WGS workflow uses 
the newer Hybrid workflow, which spends a greater percentage 
of time in stages optimized for the latest Intel architecture.

With the development of BIGstack, Intel has made significant 
optimizations to the GKL to accelerate the PairHMM 
algorithm for Intel® Advanced Vector Extensions (Intel® AVX), 
Intel® Advanced Vector Extensions 512 (Intel® AVX-512), and 
the Intel Arria 10 FPGA. The HaplotypeCaller stage of the 
GATK Best Practices workflow makes extensive use of the 
PairHMM algorithm, as evidenced by the results shown in 
Figure 2. Using WGS data, we see a 2.2x speedup overall in 
the HaplotypeCaller stage when using the Intel Arria 10 FPGA 
compared to prior-generation Intel AVX technology. For 
this reason, our experiments use the Intel Xeon Platinum 
8180 processor with the Intel Arria 10 FPGA hardware 
configuration in the following latency experiments.

Figure 2. Execution time comparison for HaplotypeCaller 
using the Genomics Kernel Library*.

GATK* Best Practices Workflow - 
3.3x Faster
The Genome Analysis Toolkit* (GATK*) Best Practices 
from the Broad Institute focuses on standardizing the 
methods by which sequencing data is analyzed. Intel 
has worked with the Broad Institute on accelerating 
the commonly used, compute-intensive genomics 
kernels on Intel® architecture, as well as optimizing 
and benchmarking the Best Practices workflows on the 
latest-generation Intel® reference hardware platform. 

As shown in Figure 4, with the latest reference 
architecture based on the Intel® Xeon® Platinum 
8180 processor, Intel® Arria® 10 Field Programmable 
Gate Array (FPGA), and Intel® Solid State Drives 
(Intel® SSDs), it takes approximately 10.8 hours 
to process a Whole Genome Sequence (WGS) at 
30x coverage using the HG38 reference genome on 
the latest Hybrid GATK Best Practices workflow for 
germline variant detection. Comparing this against 
the white paper Intel published in 201614, which 
showcased the “then” GATK Best Practices workflow 
for Whole Genome Sequence (WGS) that took 
36.12 hours, we see a compelling 3.3x speedup on 
the latest available Intel reference hardware.

HaplotypeCaller Using the 
Genomics Kernel Library*

Intel® AVX-512 Acceleration: Intel® Xeon® Platinum 8180 Processor with Intel® SSD 
Data Center P4600 Over Prior-Generation Intel Xeon Processor E5-2699 v4

Intel® AVX Baseline: Intel® Xeon® Processor E5-2699 with Intel® SSD Data Center P4600

Intel® FGPA Technology Acceleration: Intel Xeon Platinum 8180 Processor with 
Intel SSD Data Center P4600 and Intel® Arria® 10 FPGA Over Prior-Generation 
Intel Xeon Processor E5-2699 v4

M
in

ut
es

150

120

90

60

30

0
WGS

2.2x
Performance
Improvement

1.6x
Performance
Improvement

Lower is Better



White Paper | Accelerate Genomics Research with the Broad-Intel Genomics Stack*	 5

Figure 3 shows the two stages of the Hybrid workflow that 
benefit the most from Intel SSDs compared to HDDs. On the 
platform using Intel Xeon Platinum 8180 processor with SSDs, 
Samtools Sort and GatherBQSRReports stages of the workflow 
provide up to 1.8x speedup over HDDs. Overall, SSDs provide 
up to a 1.2x speedup over HDDs for this entire Hybrid workflow.

Figure 4 compares the execution time in hours taken to 
complete the end-to-end processing of a single WGS 
and WES workflow using the latest-generation Intel Xeon 
Platinum 8180 processor with Intel FPGA technology and the 
prior-generation Intel Xeon processor E5-2699 v4. The newer 
processor provides a 1.3x and 1.2x speedup over the prior-
generation processor for WGS and WES, respectively. 

Furthermore, comparing the blue bars in Figure 4, we observe 
that the Intel Xeon Scalable processor-based hardware 
platform, together with Intel 3D NAND SSDs and Intel FPGA 
technology configured with 256 GB of memory, delivers 
very close performance compared to the same hardware 
platform configured with 512 GB of memory, thus providing a 
significant opportunity to lower total cost of ownership (TCO).

THROUGHPUT

In this section, we discuss how using the latest-generation 
Intel Xeon Scalable processor and Intel SSDs with NVMe 
can increase throughput compared to the prior-generation 
processor and HDDs. We define the throughput metric as the 
number of processed samples produced per day per node.

To maximize the number of samples processed per day 
per node, we adjusted the load to achieve maximum CPU 
utilization, while taking into account the stages of the 
workflow that are bound by memory or disk space. We then 
extensively tuned each of the stages in the workflow by 
setting the CPU and memory requirements based on the 
latency experiments for each of these individual workflows. 
For example, while all the available threads/cores on the 
system are allocated to the SamToFastqAndBwaMemandMba 
and SortSampleBam stages in the latency experiments, 
they are set to request only 2 threads/cores for throughput 
experiments to enable as many tasks as possible to execute 
in parallel at any given time. Also, the memory-per-thread for 
the Samtools Sort stage is tuned for SSDs and HDDs based 
on the analysis observed in the latency experiments.

Effect of Intel® SSDs with NVMe* on 
Single-Node Execution Time
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Intel Xeon Platinum 8180 Processor with 56 Threads/Cores, 512 GB Memory, and
Intel® Arria® 10 FPGA PCIe* Card on Intel® SSDs
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Figure 3. Effect of Intel® Solid State Drives with NVMe* 
on execution time (platform based on the Intel® Xeon® 
Platinum 8180 processor).
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Figure 4. Effect of latest-generation processor on execution time.

Collaborating for Success
The Intel-Broad Center for Genomic Data Engineering 
is a five-year, USD 25 million collaboration announced 
in November 2016.15 During this effort, researchers 
and software engineers at the new Intel-Broad Center 
for Genomic Data Engineering will build, optimize, and 
widely share new tools and infrastructure that will help 
scientists integrate and process genomic data. 

Learn more at Intel-Broad Center for Genomic Data 
Engineering.

https://www.intel.com/content/www/us/en/healthcare-it/solutions/genomics-broad-data.html
https://www.intel.com/content/www/us/en/healthcare-it/solutions/genomics-broad-data.html
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Figure 5 compares the throughput achieved using prior-
generation and latest-generation Intel Xeon processors. The 
latest-generation processor provides 1.4x higher throughput 
over the prior-generation processors for both WGS and WES. 

Figure 6 compares the throughput that can be sustained on 
a platform using the Intel Xeon Platinum 8180 processor 
equipped with SSDs, compared to HDDs. For the WES 
workflow, the SSDs deliver close to 1.1x more samples per 
day compared to HDDs, while for the WGS workflow the SSDs 
deliver close to 1.2x more samples per day compared to HDDs. 
The high-performance SSDs help alleviate the I/O contention 
when multiple samples are contending for resources, thus 
providing significantly higher throughput than the HDDs. 

SYSTEM UTILIZATION FOR LATENCY EXPERIMENTS

The following sections discuss our observations about CPU 
and memory utilization and read/write performance during 
our latency experiments.

CPU Utilization
Figure 7 demonstrates the average CPU utilization when 
executing a single WGS workflow on the different reference 
architectures described in the Hardware section. The vertical 
axis of the graph displays the percentage of the CPU used 
across all processor cores; the horizontal axis represents the 
number of hours since the workflow batch was submitted. It 
took a total of 10.85 hours to run a single WGS on an Intel Arria 
10 FPGA card with SSDs, and a total of 12.60 hours for the same 
processor-based platform with HDDs, and 13.82 hours on the 
Intel Xeon processor E5-2699 v4 platform with SSDs. 

In the WGS Hybrid workflow, SamToFastqAndBwaMemAndMba 
exploits data-parallelism by processing unaligned BAM files by 
read group. Because there are 24 read groups, and all available 
processor cores are allocated to this step, we observe 24 
peaks and valleys in the first step corresponding to each of the 
24 shards. The valleys observed in the light blue line are more 
dramatic due to longer read and write times required for the 
HDD. The trend line for the Intel Xeon processor E5-2699 v4 
configuration (green line) demonstrates the increased runtime 
in the SamToFastqAndBwaMemAndMba stage resulting from 
only allocating 42 threads to BWA-MEM instead of 54 for the 
other tested configurations. Proceeding to the MarkDuplicates 
task, we observe sustained CPU utilization of about 20 percent 
for all tested configurations. Around 7 hours into workflow 
execution, there is a spike in HDD CPU utilization, and a 
corresponding spike in memory utilization, which is due to 
differences in how memory is allocated to the Samtools Sort 
application. The final steps in the workflow of the SSD and 
HDD experiments differ primarily in their phase and also slight 
differences in the duration of these steps. This is primarily due 
to additional time taken to read and write to disk.

Overall, we observe a clear trend of the Intel Xeon Platinum 
8180 processor-based platform configuration with 56 threads/
cores and Intel Arria 10 FPGA PCIe card with Intel SSDs (dark 
blue line) resulting in best latency performance, whereas 
removing the FPGA and SSDs results in lower performance. 

Figure 6. Effect of Intel® SSDs with NVMe* on throughput 
(platform based on the Intel® Xeon® Platinum 8180 processor).
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Figure 7. Single Whole Genome Sequence (WGS) latency CPU 
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Both configurations utilizing the latest-generation Intel Xeon 
Platinum 8180 processor result in a double-digit performance 
increase over the fastest prior-generation Intel Xeon processor. 

Memory Utilization
In Figure 8, we provide a comparison of memory utilization 
across the Intel Xeon Platinum 8180 processor with Intel Arria 
10 FPGA and SSDs (dark blue line), the same processor with 
HDDs (blue line), and the prior-generation Intel Xeon processor 
E5-2699 v4 with SSDs (orange line). The vertical axis shows the 
node’s memory utilization up to 256 GB, out of a total 512 GB 
available on each of the tested configurations. The memory 
utilization for the Intel Xeon Platinum 8180 processor with HDDs 
(blue line) is slightly more than the same processor with SSDs 
(dark blue line) because there was no swap space made available 
to the workflow tasks in the HDD experiments in order to avoid 
frequent, costly writes to disk; therefore, the red line should be 
viewed as total amount of memory that the tasks require. The 
Intel Xeon Platinum 8180 processor with SSDs (dark blue line) 

effectively uses page swapping to SSD, which results in lower 
observed memory utilization. The notable exception to this 
trend is the Samtools Sort stage (between hours 7-8), which 
allocates significantly more memory per thread when using HDD 
versus SSD. As mentioned earlier, this correlates strongly with a 
spike in CPU utilization for the system configured with HDDs. 

Read/Write Performance
The left side of Figure 9 demonstrates the average read and 
write operations when executing a single WGS workflow on 
a system using the Intel Xeon Platinum 8180 processor with 
Intel Arria 10 FPGA PCIe Card and SSDs versus the Intel Xeon 
processor E5-2699 v4 with SSDs. Analogously, the right side 
demonstrates the average read and write operations when 
executing a single WGS workflow on the Intel Xeon Platinum 
8180 processor using HDDs. These figures are separated so 
that is easy to identify subtle differences between workflow 
stages that are obfuscated when the graphs are combined 
because of differences in SSD/HDD IOPS scale. 

The left side of Figure 9 shows nearly constant writes to the 
SSD volume in the SamToFastqAndBwaMemAndMba stage for 
both generations of processors. Whereas, in the right side we 
see staggered writes to the HDD in this stage. We also observe 
that the total number of write operations is higher in this stage 
with SSDs, which can be attributed to the higher bandwidth of 
SSDs. Because of the way these experiments were configured 
with swapiness enabled for SSDs and disabled for HDDs, we 
can easily determine in later workflow steps where the read and 
write operations are making use of swap space versus when 
task inputs and outputs are read to and from disk. 

For example, we see a major spike between the 6-7 hour mark 
on the right side of Figure 9 that corresponds to temporary files 
written to disk in the SortSampleBam stage, as well as a write 
peak near the end of the graph that aligns with the conclusion of 
multiple HaplotypeCaller shards. As mentioned in the Memory 
Utilization section, overall we see much more read and write 
activity with SSDs throughout the graph because pages are 
swapped in and out of memory onto the SSD, but there are only 
a few minor bumps on the right side of Figure 9.

Figure 9. Single Whole Genome Sequence (WGS) latency read/write SSD (left) and HDD (right) IOPS comparison.
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SYSTEM UTILIZATION FOR THROUGHPUT EXPERIMENTS
The following sections discuss our observations about CPU 
and memory utilization and read/write performance during 
our throughput experiments

CPU Utilization
Figure 10 demonstrates the average CPU utilization with a load of 
50 WGS workflows across the different reference architectures 
described in the Hardware section. The vertical axis displays 
the percentage of the CPU used across all processor cores; the 
horizontal axis represents the number of days since the workflow 
batch was submitted. It took a total of 10.35 days to process the 
50 WGS workflows on the Intel Xeon Platinum 8180 processor 
platform with SSDs; 11.87 days for the Intel Xeon Platinum 8180 
processor platform with HDDs; and 14 days for the Intel Xeon 
processor E5-2699 v4 platform with SSDs. The first stage of 
the workflow—SamToFastqAndBwaMemAndMba—sustains at 
close to 100 percent utilization as each workflow task requests 
2 threads to run. This translates to running 28 jobs in parallel on 
the Intel Xeon Platinum 8180 processor platform, and 22 jobs 
in parallel in the Intel Xeon processor E5-2699 v4 platform. For 
all the 50 WGS workflows submitted, this first stage completes 
close to 5.5 days into execution on the Intel Xeon Scalable 
Platinum 8180 processor platform, while it takes close to 8 days 
on the Intel Xeon processor E5-2699 v4 platform due to lesser 
core count. 

The next stage—MarkDuplicates—starts executing in 
parallel (based on resources available) as the first stage 
starts completing for some workflows. The first drop in CPU 
utilization happens as the execution enters the phase of 
the workflow where Samtools Sort and the first few GATK 
steps start running in parallel (based on resources available 
for the respective tasks) when the previous stages finish. As 
observed with latency runs, the Samtools Sort step performs 
well on SSDs compared to HDDs (based on the memory-
per-thread argument for Samtools). For the blue line, the 
execution that happens between 6-8 days is a combination 
of Samtools Sort, GATK BaseRecalibrator, GATK ApplyBQSR, 

and some initial GATK HaplotypeCaller steps. As all the 
workflows complete their tasks up to HaplotypeCaller, we 
start seeing sustained utilization of only HaplotypeCaller and 
MergeVCFs tasks, which only take up 45-50 percent of the 
utilization, as we are constrained by the memory requirements 
for this step of the workflow in all three configurations. 
Comparing the valleys where the combination of workflow 
tasks execute across all three configurations, the execution of 
the workflows on HDDs takes longer to reach the sustained 
utilization for HaplotypeCaller (close to 9 days into execution). 
This happens because all the stages of the workflow after 
SamToFastqAndBwaMemAndMba significantly read and write 
pages to and from the HDDs, which proves to be a costly factor 
with HDDs. In contrast, the valleys for both the dark blue and 
orange lines, which compare the Intel Xeon Platinum 8180 
processor and the prior-generation Intel Xeon processor 
E5-2699 v4, are similar and the execution times are only 
slightly different because these stages are not bound by CPU 
or memory or SSDs across processor generations. Similar to 
the latency experiments, the two states of the workflow that 
significantly speed up with the latest-generation processor—
where the higher core count makes a difference—are 
SamToFastqAndBwaMemAndMba and HaplotypeCaller. In 
all three configurations, the first of the 50 workflows starts 
completing a few hours into the sustained 50 percent CPU 
utilization at the end of their respective colored lines. 

Memory Utilization
Evaluating Figure 11, we observe a comparison between the 
Intel Xeon Platinum 8180 processor with SSDs (blue line), Intel 
Xeon Platinum 8180 processor with HDDs (dark blue line), and 
prior-generation Intel Xeon processor E5‑2699 v4 with SSDs 
(orange line). The vertical axis shows the node’s maximum 
memory utilization at close to 256 GB for SamToFastqAnd 
BwaMemAndMba for the Intel Xeon Platinum 8180 processor 
and 200 GB for the same step running on the prior-generation 
Intel Xeon processor E5‑2699 v4, out of a total 512 GB 
available on each of the tested configurations. 

Figure 10. Whole Genome Sequence (WGS) throughput 
CPU utilization comparison.
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Per the learnings from the latency experiment, no swap 
space was made available to the workflow tasks in the 
HDD experiments to avoid frequent swapping. Because of 
this, the Intel Xeon Platinum 8180 processor with HDDs 
configuration’s (dark blue line) memory utilization for the 
Samtools Sort and the GATK stages of the workflow is higher 
and trending differently compared to the SSD experiments 
(across both generations). The only stage of the workflow that 
is bound by memory is HaplotypeCaller, where each job of 
HaplotypeCaller requests 21 GB of memory, so at a given time 
only 23 or a maximum of 24 HaplotypeCaller jobs can run. 
This translates back to the average of 45-50 percent average 
CPU utilization for both generations of processors. The phase 
shift in execution time observed for the prior-generation 
processors compared to the latest-generation processors is 
consistent as observed with the latency runs as well.

Read/Write Performance
The left side of Figure 12 demonstrates the average read and 
write operations when executing a load of 50 WGS workflows 
on a system using the Intel Xeon Platinum 8180 processor with 
SSDs versus the Intel Xeon processor E5-2699 v4 with SSDs. 
Analogously, the right side demonstrates the average read and 
write operations when executing the same load on the Intel 
Xeon Platinum 8180 processor using HDDs. In both graphs, 
the vertical axis corresponds to the read/write operations 
per second as observed on SSDs or HDDs; the horizontal 
axis corresponds to the number of days elapsed. Note that 
the right side of Figure 12 has fewer days on the horizontal 
axis compared to the left side, due to the longevity of the 
experiment with the Intel Xeon processor E5-2699 v4 with 
SSDs on the left side. Similar to our latency experiments, we 
observe that the total number of read/write operations is 
higher in the first stage of the workflow with SSDs due to the 
sustained connection capacity of SSDs, but are not visible in 
these graphs due to the much higher disk activity observed in 
the later stages. 

The stages of the workflow where the major activity happens 
are between days 6-8 for the Intel Xeon Platinum 8180 
processor with SSDs, days 6-9 days for the same processor with 
HDDs, and days 8-10 for the Intel Xeon processor E5‑2699 v4 
with SSDs. These periods correspond to the many temporary 
files read and written to disk in the SortSampleBam and 
GATK stages. This activity is more noticeable in the left side of 
Figure 12 because pages are swapped in and out of memory 
more efficiently, compared to HDDs. We observed frequent 
reads/writes between days 10-14 in the case of the Intel Xeon 
processor E5-2699 v4 with SSDs during the HaplotypeCaller 
stage of the workflow, due to an external process running on 
the node. However, since the CPU and memory utilization of 
the stage did not change drastically, and the overall execution 
time and throughput are within expectations, we present 
this data. Overall, the higher bandwidth of Intel SSDs helps 
improve the throughput performance of all the stages of the 
workflow compared to HDDs, by being able to reach close 
to 12 million IOPS, which is 2.4x higher than what can be 
achieved with HDDs. 

Conclusion
Advancements in genomic sequencing technology and its 
continually decreasing cost are driving an unprecedented 
scale of data that must be processed and analyzed. With 
BIGstack, Intel and Broad take a major leap in overcoming 
the processing and storage bottlenecks of the past. As 
evidenced by our test results, BIGstack is ideal for use in 
situations involving the analysis of large sets of genomic 
data, such as running the GATK Best Practices workflow from 
the Broad Institute. Configured with the latest Intel Xeon 
Scalable processor and Intel 3D NAND SSDs, BIGstack allows 
researchers to process up to five WGS per day and more than 
100 WES per day, with only a single node. Furthermore, this 
configuration can boost the individual sample analysis by up 
to 2.2x at a lower memory cost, compared to a platform based 
on the prior-generation Intel Xeon processor E5-2699 v4. 

Figure 12. Whole Genome Sequence (WGS) throughput read/write SSD and HDD IOPS comparison.
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These results open up multiple exciting avenues for further 
investigation. Possible future work includes: 

•	 WES/WGS throughput experiments with Intel Arria 10 
FPGAs. WES and WGS latency experiments were a natural 
first choice to compare Intel Arria 10 FPGA and Intel AVX 
performance. In the coming months, we hope to investigate 
how using Intel Arria 10 FPGAs improves workflow throughput. 

•	 Smith-Waterman Kernel for FPGAs. There is an ongoing 
effort to accelerate the Smith-Waterman algorithm for the 
Intel Arria 10 FPGA. The GATK HaplotypeCaller tool uses the 
Smith-Waterman algorithm, so we expect that implementing 
this kernel in GKL would lead to additional improvements in 
runtime for both the GATK 3.8 and Hybrid workflows. 

•	 Intel® Optane™ technology. Intel SSDs improve latency 
and throughput performance as a result of their high read/
write bandwidth compared to traditional HDDs. The larger 
bandwidth offered by Intel Optane technology should 
further extend these gains.

•	 Fine tuning memory and core requirements. The processor 
cores and memory allocated to each of the workflow stages 
were tuned primarily so the workflows could run on SSDs or 
HDDs. There is likely room to further tune memory-bound 
stages of the workflow, such as HaplotypeCaller.

•	 Optimize the pipeline with software tools and piping 
stages. Some of the improvements in our results can be 

attributed to changes in how the workflow stages are 
arranged and which stages are grouped together. There 
may be further optimizations that result from regrouping 
additional workflow stages, as well as additional 
performance tuning with the release of GATK 4.0. 

The results published in this paper show that with optimized 
hardware and the latest version of BIGstack, analysis of large 
datasets is now possible at a significantly improved rate.

Contact your Intel representative for more information 
about how Intel can help you and your organization 
with your genome analysis needs.
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Appendix A: Datasets

Table A1. Dataset Selection for Whole Genome Sequencing (WGS) at 30x Coverage 

Sample File Used Size (GB)

NA12878

HK3T5CCXX.8.Pond-492100.unmapped.bam 2.7
HK3T5CCXX.7.Pond-492100.unmapped.bam 2.7
HK3T5CCXX.5.Pond-492100.unmapped.bam 2.8
HK3T5CCXX.4.Pond-492100.unmapped.bam 2.8
HK3T5CCXX.3.Pond-492100.unmapped.bam 2.8
HK3T5CCXX.2.Pond-492100.unmapped.bam 2.8
HK35NCCXX.2.Pond-492100.unmapped.bam 2.8
HK35MCCXX.8.Pond-492100.unmapped.bam 2.7
HK35MCCXX.7.Pond-492100.unmapped.bam 2.8
HK35MCCXX.6.Pond-492100.unmapped.bam 2.8
HK35MCCXX.5.Pond-492100.unmapped.bam 2.8
HK35MCCXX.4.Pond-492100.unmapped.bam 2.7

Sample File Used Size (GB)

NA12878

HK35MCCXX.3.Pond-492100.unmapped.bam 2.7
HK35MCCXX.2.Pond-492100.unmapped.bam 2.7
HK35MCCXX.1.Pond-492100.unmapped.bam 2.7
HJYN2CCXX.1.Pond-492100.unmapped.bam 2.2
HJYFJCCXX.8.Pond-492100.unmapped.bam 2.8
HJYFJCCXX.7.Pond-492100.unmapped.bam 2.8
HJYFJCCXX.6.Pond-492100.unmapped.bam 2.8
HJYFJCCXX.5.Pond-492100.unmapped.bam 2.9
HJYFJCCXX.4.Pond-492100.unmapped.bam 2.8
HK3T5CCXX.6.Pond-492100.unmapped.bam 2.8
HK3T5CCXX.1.Pond-492100.unmapped.bam 2.7
HK35NCCXX.1.Pond-492100.unmapped.bam 2.8

Table A2. Dataset Selection for Whole Exome Sequencing (WES) at 50x Coverage 

Sample File Used Size (GB)
HG02461 HG02461.unmapped.bam 5.9
HG02462 HG02462.unmapped.bam 7.4
HG02464 HG02464.unmapped.bam 6.0
HG02561 HG02561.unmapped.bam 6.3
HG02562 HG02562.unmapped.bam 5.7
HG02570 HG02570.unmapped.bam 7.2
HG02571 HG02571.unmapped.bam 6.3
HG02582 HG02582.unmapped.bam 5.5
HG02583 HG02583.unmapped.bam 6.2
HG02585 HG02585.unmapped.bam 6.0
HG02588 HG02588.unmapped.bam 6.2
HG02595 HG02595.unmapped.bam 7.0
HG02610 HG02610.unmapped.bam 6.5
HG02613 HG02613.unmapped.bam 5.8
HG02620 HG02620.unmapped.bam 5.9
HG02621 HG02621.unmapped.bam 5.8
HG02623 HG02623.unmapped.bam 6.3
HG02624 HG02624.unmapped.bam 7.0
HG02629 HG02629.unmapped.bam 6.5
HG02634 HG02634.unmapped.bam 6.4
HG02635 HG02635.unmapped.bam 5.8
HG02642 HG02642.unmapped.bam 6.2
HG02645 HG02645.unmapped.bam 6.0
HG02646 HG02646.unmapped.bam 5.9
HG02676 HG02676.unmapped.bam 6.0

Sample File Used Size (GB)
HG02678 HG02678.unmapped.bam 5.6
HG02679 HG02679.unmapped.bam 6.0
HG02715 HG02715.unmapped.bam 7.2
HG02716 HG02716.unmapped.bam 5.7
HG02721 HG02721.unmapped.bam 5.7
HG02756 HG02756.unmapped.bam 6.4
HG02757 HG02757.unmapped.bam 6.4
HG02768 HG02768.unmapped.bam 6.0
HG02769 HG02769.unmapped.bam 6.2
HG02771 HG02771.unmapped.bam 6.3
HG02772 HG02772.unmapped.bam 5.8
HG02798 HG02798.unmapped.bam 7.1
HG02799 HG02799.unmapped.bam 5.9
HG02804 HG02804.unmapped.bam 7.1
HG02807 HG02807.unmapped.bam 6.6
HG02808 HG02808.unmapped.bam 6.7
HG02810 HG02810.unmapped.bam 7.2
HG02811 HG02811.unmapped.bam 6.1
HG03027 HG03027.unmapped.bam 6.9
HG03028 HG03028.unmapped.bam 7.5
HG03039 HG03039.unmapped.bam 5.8
HG03040 HG03040.unmapped.bam 7.4
HG03046 HG03046.unmapped.bam 6.7
HG03049 HG03049.unmapped.bam 6.1
HG03258 HG03258.unmapped.bam 6.9

Table A3. Resource Files for Single-Sample Germline Variant Calling Workflow
File Type File Used Size
Reference Genome Homo_sapiens_assembly38.fasta 3.1 GB
dbSNP VCF File Homo_sapiens_assembly38.dbsnp138.vcf 11 GB
Indels VCF File Mills_and_1000G_gold_standard.indels.hg38.vcf.gz 20 MB
HapMap VCF File hapmap_3.��3.hg38.vcf.gz 60 MB
Omni VCF File 1000G_omni2.5.hg38.vcf.gz 51 MB
1000 Genome 1000G_phase1.snps.high_confidence.hg38.vcf.gz 1.8 GB
WGS Intervals hg38_wgs_scattered_calling_intervals.txt 7.5 KB
Exome Intervals hg38_es_scattered_calling_intervals.txt 6.9 KB



White Paper | Accelerate Genomics Research with the Broad-Intel Genomics Stack* Supplementary Information	 13

Figure B1. GATK* v3.8 Single-Sample Germline Variant Calling workflow
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Appendix B: WES GATK* v3.8 Single-Sample Germline Variant Calling Workflow
The Single-Sample Germline Variant Calling workflow for WES implements data pre-processing and initial variant calling 
(gVCF generation) according to the GATK* Best Practices (June 2016) used for germline SNP and Indel discovery in human 
sequencing data. This workflow was implemented with GATK v3.8 tools, and tested with WES only. The workflow starts with 
unmapped BAM files and runs the different tools from SamToFASTQ and BWA-Mem to GATK HaplotypeCaller and Picard* 
MergeVCFs for all samples. Figure B1 describes the sequence of steps used for this workflow. 
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Appendix C: WGS GATK* Hybrid Single-Sample Germline Variant Calling Workflow
The WGS Single-Sample Germline Variant Calling workflow is a Hybrid workflow for WGS, meaning that it uses multiple GATK* 
versions (GATK v3.8 for Haplotype Caller and GATK v4.0 beta.5 for all other GATK tools), and it makes several optimizations 
to the GATK v3.8 Single-Sample workflow. These improvements include piping the output of SamToFastqAndBwaMem 
to MergeBamAlignment, thus saving a costly write and read from disk. In addition, the two sorting steps in the GATK v3.8 
Germline Variant Calling workflow are consolidated into a single Samtools* Sort step. Figure C1 describes the sequence of 
steps used for this workflow.  

Figure C1. Hybrid Single-Sample Germline Variant Calling workflow. All GATK* steps 
except HaplotypeCaller use GATK v4.0 beta.5. HaplotypeCaller uses GATK v3.8
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Appendix D: Configuration Adjustments
In addition to the hardware configuration listed in the Hardware section, we recommend verifying that the system has the 
latest available BIOS and making the following changes prior to benchmarking system performance:

•	 Verify the BIOS version is higher than 1.0004:

-- dmidecode | grep -A 2 BIOS | grep -i version 

-- Expected output: Version: SE5C620.86B.00.01.0004.071220170215

•	 Enabling turbo mode in the system BIOS

•	 Set the Linux* frequency governor to performance mode:

-- cpupower -c all frequency-set -g performance 

•	 If the target system is configured with hard drives, follow the steps below to avoid swap thrashing:

-- Paste the following text into /etc/cgconfig.d/condor

group condor

{

	 cpuset {}

	 cpu {}

	 cpuacct {}

	 memory {

	 	 memory.swappiness = 0;

	 }

	 devices {}

	 freezer {}

	 net_cls {}

	 blkio {}

	 perf_event {}

}

-- systemctl restart cgconfig

-- echo 0 > /sys/fs/cgroup/memory/condor/memory.swappiness

•	 The Java* version used for all experiments is “OpenJDK build 1.8.0 151-b12”

If you encounter any issues with the above commands, please contact your assigned Intel representative.
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Appendix E: Details on Tools and Technologies

CROMWELL*

Users submit workflows to the Cromwell* execution engine. These workflows are composed in the form of Workflow Description 
Language (WDL) files, and make use of numerous tools optimized by Intel, including the Genomics Kernel Library* (GKL*) and 
GenomicsDB*.

HTCONDOR*

When a user submits a workflow, Cromwell directs HTCondor* to schedule the workflow’s tasks using available resources. 
HTCondor handles the allocation of tasks, making sure that tasks are scheduled based on application requirements. Cromwell 
and HTCondor also make it possible to run multiple workflows concurrently, such as a batch of processes.

GENOMICSDB*

GenomicsDB is a data store for variants based on the TileDB* array storage manager. TileDB is a system for efficiently 
storing, querying, and accessing sparse and dense matrix/array data. It is developed by researchers at the Intel® Science and 
Technology Center for Big Data. 

Variant data, such as the gVCF files produced by the Single-Sample Germline Variant Calling workflow, is sparse by nature 
(sparse relative to the whole genome), which makes TileDB an excellent fit. GenomicsDB adds on to the TileDB platform, 
making it even more specialized and maximizing efficiency for handling genomic data.

GenomicsDB stores variant data in a two-dimensional TileDB array where:
•	 Each column corresponds to a genomic position (chromosome and position).
•	 Each row corresponds to a sample in a VCF (“CallSet” in GA4GH terminology).
•	 Each cell contains data for a given sample or CallSet at a given position; data is stored in the form of TileDB cell attributes.
•	 Cells are stored in column major order; this speeds up accessing cells with the same column index (that is, data for a given 

genomic position over all samples).
•	 Variant interval/gVCF interval data is stored in a cell at the start of the interval. The END is stored as a cell attribute. When 

queried for a given genomic position, the query library performs an efficient sweep to determine all intervals that intersect 
with the queried position.

GenomicsDB can be configured to store variant data across multiple partitions of an array. All the data belonging to one 
partition of an array is stored in a single file system. Thus, by creating multiple partitions, users can store data across multiple 
hosts or nodes in a cluster. Array partitioning is useful when the data to be stored and queried is very large and cannot 
fit within a single machine or node. Alternatively, the user might wish to store array partitions in different nodes so that 
downstream queries and analysis can be run in a distributed manner for scalability or performance.

For more details on GenomicsDB, please see GenomicsDB: Storing Genome Data as Sparse Columnar Arrays.

GENOMICS KERNEL LIBRARY*

The Genomics Kernel Library (GKL) is a collection of common, compute-intensive kernels used in genomic analysis tools. 
Intel and the Broad Institute worked together to identify these kernels in GATK. Experts across Intel optimized the kernels for 
Intel® architecture and released them in the GKL. Intel and Broad worked together to update GATK to use the GKL. The kernels 
provided by the GKL include those listed in Table E1.

Table E1. Genomics Kernel Library* (GKL*) Kernels

Kernel Description Tools That Use It

PairHMM Advanced Vector Extensions (Intel® AVX/AVX-512) and Intel® 
Arria® 10 FPGA version of the PairHMM algorithm, which is used 
to perform pairwise alignment of reads vs. haplotypes in GATK* 
HaplotypeCaller and MuTect2

HaplotypeCaller and MuTect2

ISA-L igzip compression High-performance level 1 compression dynamically 
optimized for genomic data

All GATK tools that write BAM files

OTC zlib compression Optimized zlib compression for levels 2 through 9 All GATK tools that write BAM files

INFLATE decompression Optimized decompression for data compressed in the 
DEFLATE format

All GATK tools that read BAM or  
block-gzipped VCF files

http://intel.com/content/dam/www/public/us/en/documents/white-papers/genomics-storing-genome-data-paper.pdf
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The GKL currently supports optimized native libraries for Linux* and OSX*, and contains Java* wrappers for GATK and HTSJDK. 
The compression and decompression kernels in GKL provide a high level of acceleration for compression and decompression 
of BAM and block-gzipped VCF file formats used within the GATK suite. For end users, these are integrated into GATK using the 
precompiled release on Maven Central. 

GATK also supports standard C/C++ applications through an optimized libz.so, a zlib drop-in replacement for optimized 
compression in a native C/C++ framework. This is also open source and released on GitHub as part of the GKL.

Table E2 provides information on how to optimize the GKL settings for running the workflows described in the Workflows and 
Data section.

For more information on the GKL, please see Accelerating the Compression and Decompression of Genomics Data using GKL 
Provided by Intel.

Table E2. Optimized Genomics Kernel Library* (GKL*) Settings

Kernel Setting Default Optimized Summary

--pair_hmm_implementation FASTEST_AVAILABLE System dependent Intel benchmarking 
used VECTOR_LOGLESS_CACHING or 
VECTOR_LOGLESS_CACHING_FPGA_
EXPERIMENTAL

By default, GATK* will select the fastest 
available PairHMM implementation on the 
system.

--nativePairHmmThreads 4 1 The number of threads should be tuned 
based on system configuration and 
expected workload.

--useDoublePrecision false false Set to true to match the results of Java* 
PairHMM with about half the performance 
of single precision.

--bam_compression 1 1 Sets compression level (1 is low, 9 is high). 
Compression level 1 provides much higher 
performance with slightly larger output.

https://search.maven.org/
https://github.com/bartleyintel/model-for-predicting-rapid-response-team-events
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/accelerating-genomics-data-gkl-white-paper.html
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/accelerating-genomics-data-gkl-white-paper.html



