INTEL® HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT

INTEL® HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT

Massively Parallel K-Nearest Neighbor Computation on Distributed Architectures

Mostofa Patwary¹, Nadathur Satish¹, Narayanan Sundaram¹, Jilalin Liu², Peter Sadowski², Evan Racah², Suren Byna², Craig Tull², Wahid Bhimji² Prabhat², Pradeep Dubey¹

¹Intel Corporation, ²Lawrence Berkeley National Lab

KNN: K-Nearest Neighbors

Problem: Given a set of multi-dimensional data points, find the k closest neighbors

- Classification => take the majority vote from the neighbors
- Regression => take the average value of the neighbors

KNN: Well known applications

- Object classification in images
- Text classification and information retrieval
- Prediction of economic events
- Medical diagnosis
- 3D structure prediction of protein-protein interactions and
- Science applications

Scientific Motivation

Simulation of the Universe by the Nyx code

3D simulation of magnetic reconnection in electron-positron plasma by VPIC code

The interior of one of the cylindrical Daya Bay Antineutrino detector

KNN: K-Nearest Neighbors

Problem: Given a set of multi-dimensional data points, find the k closest neighbors

- Naïve approach: compute distance from the query point to all points and get the k-closest neighbors
 - Pros: highly parallel
 - Cons: Lot of additional distance computation, not suitable for large scale dataset (communication heavy)

Can we take advantage of the partitioning?

KNN: kd-tree

Use kd-tree, a space-partitioning data structure for organizing points in a k-dimensional space.


```
function kd-tree(Points* P)
select an axis (dimension)
compute median by axis from the P
create a tree node
node->median = median
node->left = kd-tree (points in P before median)
node->right = kd-tree (points in P after median)
```

KNN: kd-tree

Use kd-tree, a space-partitioning data structure for organizing points in a k-dimensional space.

if node has a closer point than the point in R add it to R

else

KNN

KNN has two steps:

kd-tree construction => build the kd-tree
 query => to compute the k-nearest neighbors

What are the challenges in parallelizing KNN!

KNN: distributed kd-tree construction

- At each node: compute median of a selected dimension move points to the left node and right node
- Each internal node contains
 - o Selected dimension
 - o Median
 - Left pointer and right pointer
- Each leaf node
 - o contains a set of points

KNN: local kd-tree construction

KNN: distributed kd-tree querying

- Each processor has a set of queries
 - Queries could be local and non-local

- Non-local queries:
 - Ask every node (more computation and communication)
 - o Transfer ownership
 - \checkmark Get the local closest k points
 - \checkmark Ask neighbor node with the k^{th} point distance

KNN: distributed kd-tree querying

INTEL[®] HPC DEVELOPER CONFERENCE

KNN: Algorithmic Choices [kd-tree construction]

- Choice of split point
- Choice of split dimension
- Choice of bucket size

Median, average, or min + (max-min)/2

Sampling based median computation

KNN: Sampling based median (local)

KNN: Sampling based median (distributed)

KNN: Algorithmic Choices [kd-tree construction]

- Choice of split point
- Choice of split dimension
- Choice of bucket size

Maximum range

Imbalanced kd-tree More communication and computation

- Choice of split point
- Choice of split dimension
- Choice of bucket size

INTEL[®] HPC DEVELOPER CONFERENCE

KNN: Experiments

Datasets

Name	Particles	Dims	Time (C)	$_{k}$	Queries (%)	Time (Q)	Cores
cosmo_small	1.1 B	3	23.3	5	10	12.2	96
cosmo_medium	8.1 B	3	31.4	5	10	14.7	768
cosmo_large	68.7 B	3	12.2	5	10	3.8	49152
plasma <u>l</u> arge	188.8 B	3	47.8	5	10	11.6	49152
dayabay_large	2.7 B	10	4.0	5	0.5	6.8	6144
cosmo_thin	50 M	3	1.1	5	10	1.1	24
plasma_thin	37 M	3	1.0	5	10	0.8	24
dayabay_thin	27 M	10	1.8	5	0.5	3.2	24

- Cosmology: Three cosmological N-body simulations datasets using Gadget code [12 GB, 96 GB, 0.8 TB]

- Plasma Physics: 3D simulation of magnetic reconnection in electron position using VPIC code [2.5 TB]

- Particle Physics: Signals from cylindrical antineutrino detectors at Daya Bay experiment [30 GB]
- One representative small dataset from each to experiment on single node.

KNN: Experiments

Hardware Platform

- Edison, a Cray XC30 supercomputing system @NERSC
 - 5576 compute nodes, each with two 12-cores Intel[®] Xeon [®] E5-2695 v2 processors at 2.4 GHz and 64 GB of 1866-DDR3 memory.
 - Cray Aries interconnect (10 GB/s) bi-directional bandwidth per node
- Codes developed in C/C++
- Compiled using Intel[®] compiler v.15.0.1 and Intel[®] MPI library v.5.0.2
- Parallelized using OpenMP (within node) and MPI (between nodes)

KNN: Results (Multinode)

Scalability: Strong scaling (Construction and Querying)

cosmo_large [69B particles], plasma_large [189B particles], and dayabay_large [3B particles]

KNN: Results (Multinode)

Scalability: Weak scaling (Construction and Querying)

The first three cosmology datasets

2.2x (1.5x) increase when scaled to 64x more cores and data

KNN: Results (Multinode)

Runtime breakdown (Construction and Querying)

cosmo_large [69B particles], plasma_large [189B particles], and dayabay_large [3B particles]

INTEL[®] HPC DEVELOPER CONFERENCE

KNN: Results (single node)

Scalability (Construction and Querying)

KNN: Results (single node)

Comparison to previous implementations

KNN: Intel Xeon Phi (KNL) processor

Datasets used for experiments on KNL

	Constru	uction	Querying		
Name	Particles	Dims	Particles	Dims	
ps <u>f_mod_mag</u>	2M	10	10 M	10	
all_mag	2M	15	10 M	15	
cosmo	254M	3	254M	3	
plasma	250M	3	250M	3	

Comparing KNL to Titan Z [1] performance

[1] Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger Buffer k-d Trees on Multi-Many-Core Systems. <u>http://arxiv.org/abs/1512.02831</u>, Dec 2015

INTEL[®] HPC DEVELOPER CONFERENCE

KNN: Intel Xeon Phi (KNL) processor

KNL Scaling

KNL Scaling (6.5X speedup using 8X more node)

64

- Each node has partial view of the entire kd-tree (keeps global kd-tree and only its own local kd-tree)
- 127X larger construction dataset, 25X larger query dataset
- Titan Z [1] based implementation does not use distributed kd-tree, hence incapable to deal massive dataset

[1] Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger Buffer k-d Trees on Multi-Many-Core Systems. <u>http://arxiv.org/abs/1512.02831</u>, Dec 2015

INTEL[®] HPC DEVELOPER CONFERENC

Conclusions

- □ This is the first distributed kd-tree based KNN code that is demonstrated to scale up to ~50,000 cores.
- □ This is the first KNN algorithm that has been run on massive datasets (100B+ points) from diverse scientific disciplines.
- We show that our implementation can construct kd-tree of 189 billion particles in 48 seconds on utilizing ~50,000 cores. We also demonstrate computation of KNN of 19 billion queries in 12 seconds.
- □ We successfully demonstrate both strong and weak scalability of KNN implementation.
- □ We showcase almost linear scalability un to 128 KNL nodes
- Our implementation is more than an order of magnitude faster than state-of-the-art KNN implementation.

Acknowledgements

- Daya Bay Collaboration for providing access to datasets
- Zarija Lukic for providing access to Gadget datasets
- Vadim Roytershteyn for providing access to VPIC datasets
- Tina Declerck and Lisa Gerhardt for facilitating large scale runs on NERSC

INTEL® HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT

Thank you for your time

Prabhat

prabhat@lbl.gov

www.intel.com/hpcdevcon