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KNN: K-Nearest Neighbors

R/

% Problem: Given a set of multi-dimensional data points, find the k closest neighbors

[(k=3]

Classification => take the majority vote from the neighbors
Regression => take the average value of the neighbors

) )
0’0 0’0
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KNN: Well known applications

/7

% Object classification in images

s Text classification and information retrieval

% Prediction of economic events

% Medical diagnosis

% 3D structure prediction of protein-protein interactions and

/7

% Science applications
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Scientific Motivation

Simulation of the Universe 3D simulation of magnetic reconnection in The interior of one of the cylindrical
by the Nyx code electron-positron plasma by VPIC code Daya Bay Antineutrino detector

Image Courtesy: Prabhat [LBNL], Oliver Riibel [LBNL], Roy Kalschmidt (LBNL)
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KNN: K-Nearest Neighbors

R/

% Problem: Given a set of multi-dimensional data points, find the k closest neighbors

[(k=3]

* Naive approach: compute distance from the query point to all points and get the k-closest neighbors
¢ Pros: highly parallel
s Cons: Lot of additional distance computation, not suitable for large scale dataset
(communication heavy)

Can we take advantage of the partitioning?
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KNN: kd-tree

R/

% Use kd-tree, a space-partitioning data structure for organizing points in a k-dimensional space.
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kd-tree construction

function kd-tree(Points* P)
select an axis (dimension)
compute median by axis from the P
create a tree node
node->median = median
node->left = kd-tree (points in P before median)
node->right = kd-tree (points in P after median)
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KNN: kd-tree

R/

% Use kd-tree, a space-partitioning data structure for organizing points in a k-dimensional space.

/\1

-:thLi__;E; K/& \Z\\.
1% 0,0 /‘l’ ¢&\LN ¢

kd-tree query

function find-knn(Node node, Query g, Results R)
if node is a leaf node
if node has a closer point than the point in R
add it to R
else
closer node = g is in node->left ? node->left : node->right
far node = g is in node->left ? node->right : node->left
find-knn(closer node, g, R)
if (farthest point in R is far from median)
find-knn(far node, g, R)
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KNN

KNN has two steps:

1. kd-tree construction => build the kd-tree
2. query => to compute the k-nearest neighbors

What are the challenges in parallelizing KNN!
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KNN: distributed kd-tree construction
At each node: - - - -

compute median of a selected dimension Po P, P, Ps
move points to the left node and right node A S £ A

Each internal node contains
o Selected dimension
o Median
o Left pointer and right pointer

)
0’0

)
0.0

)
0.0

Each leaf node
o contains a set of points
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KNN: local kd-tree construction

- compute median of a selected dimension Data parallel
- move points to the left node and right node

Stop when a leaf has
points <= threshold

When we have 4 threads and 4 nodes?
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KNN: distributed kd-tree querying

« Each processor has a set of queries
o Queries could be local and non-local

O, :
AT P, 0 O

) [ ] [ ] [ ) O !

Po P, P, P O
oX O o
_____________ (_) ""IE OP1

I ofio  ©
Po P, P> Ps s

% Non-local queries:
o Ask every node (more computation and communication)
o Transfer ownership

v' Get the local closest k points

v Ask neighbor node with the k" point distance
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Query

Find query
owner from
global kd-

tree and

send
|

Find top k
neighbors

N s
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KNN: distributed kd-tree querying

Find local
KNN from
local kd-

tree

N/

. Y
For received
responses,
update
nearest
neighbor

list

N e e/

Find others
that may
contain
better
neighbors

and send

{

For received
queries,
find better
local
neighbors

and send
ey




KNN: Algorithmic Choices [kd-tree construction]

% Choice of split point ol

I
1
1
1
1
1
®le
s Choice of split dimension :
o |
% Choice of bucket size ,.E.
1
|
1

Median, average, or
min + (max-min)/2

Sampling based median computation
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KNN: Sampling based median (local)
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KNN: Sampling based median (distributed)
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KNN: Algorithmic Choices [kd-tree construction]

% Choice of split point

[ ]
e
[

¢ Choice of split dimension -

+* Choice of bucket size

--—--1----

Maximum range

Imbalanced kd-tree
More communication and computation
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KNN: Algorithmic Choices [kd-tree construction]

% Choice of split point Data parallel

s Choice of split dimension

+* Choice of bucket size

Thread parallel

Stop when a leaf has

points <= threshold Construction time vs
query time
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KNN: Experiments

Datasets
Name Particles Dims Time (C) k& Queries (%) Time (Q) Cores
cosmo_small 1.1 B 3 233 5 10 12.2 96
cosmo_medium 8.1 B 3 314 5 10 14.7 768
cosmo_large 687B 3 122 5 10 3.8 49152
plasma_large 1888 B 3 478 5 10 11.6 49152
dayabay_large 27B 10 40 5 0.5 6.8 6144
cosmo_thin S0 M 3 1.1 5 10 1.1 24
plasma_thin 3TM 3 10 5 10 0.8 24
dayabay_thin 27TM 10 18 5 0.5 32 24

Cosmology: Three cosmological N-body simulations datasets using Gadget code [12 GB, 96 GB, 0.8 TB]|
Plasma Physics: 3D simulation of magnetic reconnection in electron position using VPIC code [2.5 TB]
Particle Physics: Signals from cylindrical antineutrino detectors at Daya Bay experiment [30 GB]J

One representative small dataset from each to experiment on single node.
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KNN: Experiments

Hardware Platform

Edison, a Cray XC30 supercomputing system @NERSC
- 5576 compute nodes, each with two 12-cores Intel® Xeon ® E5-2695 v2
processors at 2.4 GHz and 64 GB of 1866-DDR3 memory.

- Cray Aries interconnect (10 GB/s) bi-directional bandwidth per node

Codes developed in C/C++
- Compiled using Intel® compiler v.15.0.1 and Intel ® MPI library v.5.0.2
Parallelized using OpenMP (within node) and MPI (between nodes)

|
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KNN: Results (Multinode)

Scalability: Strong scaling (Construction and Querying)

cosmo_large [69B particles], plasma_large [189B particles], and dayabay large [3B particles]

-+~ Construction Querying
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(a) Cosmology

4.3x using 8x cores
5.2x using 8x cores

~

Speedup compared
to 12288 cores
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(b) Plasma physics

2.7x using 4x cores
4.4x using 4x cores
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Speedup compared

to 768 cores
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(c) Particle physics

6.5x using 8x cores
6.4x using 8x cores




KNN: Results (Multinode)

Scalability: Weak scaling (Construction and Querying)

The first three cosmology datasets

~+-Construction =e=Querying
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Weak scaling (Cosmology)

2.2x (1.5x) increase when scaled to 64x more cores and data
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KNN: Results (Multinode)

Runtime breakdown (Construction and Querying)

100 e 100 "
— ﬁ m S w Local kd-tree — %
£ | |- (SMDpacking) & gy  Non-overlapped
E 1l Local kdree ; Cammunication
o (thread parallel) 8 | Il Remote KNN
E # Local kd-tree L Identify remote
) (data parallel) o nodes
- Redistribute o e  Local KNN
.E partides =
.E = Global kd-tree E 20 # Find owner
construction
0
B =,
& Q@éo aﬁ’a
(a) ' Construction time (b) Querying time

cosmo_large [69B particles], plasma_large [189B particles], and dayabay large [3B particles]
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KNN: Results (single node)

Scalability (Construction and Querying)

- COSMI plasma -=dayabay

(a) Construction

20x using 24 cores (22.4x)
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—— COSMD plasma —-+=dayabay
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(b) Querying

12x using 24 cores (16.2x)




KNN: Results (single node)

Comparison to previous implementations

IINFLANN ©* ANN ~ PANDA-1 i PANDA-24 NIFLANN = ANN — PANDA-1 I FLANN = PANDA-24
100 —1,000 - — 100
—— _— ]
Q m —
E 3 ;
b &o a
@ 10 - S & 10
= W -—
3 £ 100 E
= =25 [=] =]
g 1 = = = 0 b 1
1] B2 = = i bt
! = = = =
= =2 = = o £
2 0.1 = = = E 10 E 0.1
E N = I= - T 1 = . m
[ COSmo plasma dayabay COSmMo plasma dayabay = COSMO plasma dayabay
{a) Training (b) Classification (1 thread) (c) Classification (24 thread)
2.6x on single core 48x on single core 22x on 24 cores

59x on 24 cores
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KNN: Intel Xeon Phi (KNL) processor

Datasets used for experiments on KNL

Construction Querying
Name Particles Dims Particles Dims
psf_mod_mag 2M 10 10M 10
all_mag M 15 10M 15
COSTO 254M 3 254M 3
plasma 250M 3 250 3

Comparing KNL to
Titan Z [1] performance

2.0
- = # Titan Z (1 card)
516 = Il KNL (1 node)
% = 3 Titan Z (4 cards)
€12 ==  =KNL(4 nodes)
1 =
c =
§ =
2 0.8
<
w
2
5 0.4
o

0.0

psf_mod_mag all_mag

Up to 3.5X performance improvement

[1] Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger Buffer k-d Trees on Multi-Many-Core

Systems. http://arxiv.org/abs/1512.02831, Dec 2015
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KNN: Intel Xeon Phi (KNL) processor

Multinode KNL

KNL Scaling (6.5X speedup using 8X more node)

KNL Scaling
——psf_mod_mag-KNL ——all_mag-KNL
——psf_mod_mag-TITAN ——al|_mag-TITAN ——astro —plasma % Each node has partial view of the entire
128 8 - kd-tree (keeps global kd-tree and only its
64 own local kd-tree)
g. o 24 B3 { . ; . Ve
3 16 | 3 % 127X larger construction dataset, 25X
§ 8 § larger query dataset
4 w2 -
2 ¢ Titan Z [1] based implementation does
1 — L not use distributed kd-tree, hence
2 4 8 16 32 64 128 1 incapable to deal massive dataset
Nodes 8 16 32 64
Nodes

Each node keeps the entire kd-tree
similar to [1]

[1] Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger Buffer k-d Trees on Multi-Many-Core
Systems. http://arxiv.org/abs/1512.02831, Dec 2015
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Conclusions

U This is the first distributed kd-tree based KNN code that is demonstrated to scale up to ~50,000 cores.

O This is the first KNN algorithm that has been run on massive datasets (100B+ points) from diverse
scientific disciplines.

U We show that our implementation can construct kd-tree of 189 billion particles in 48 seconds on utilizing
~50,000 cores. We also demonstrate computation of KNN of 19 billion queries in 12 seconds.

O We successfully demonstrate both strong and weak scalability of KNN implementation.
U We showcase almost linear scalability un to 128 KNI nodes

U Our implementation is more than an order of magnitude faster than state-of-the-art KNN implementation.
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