INTEL" HPC DEVELOPER CONFERENCE
FUEL YOUR INSIGRT

INTEL” HPC DEVELOPER CONFERENCE
FUEL YOUR INSIGHT

Massively Parallel K-Nearest Neighbor
Computation on Distributed Architectures

Mostofa Patwary', Nadathur Satish!, Narayanan Sundaram?,
Jilalin Liu?, Peter Sadowski?, Evan Racah?, Suren Byna?, Craig Tull?, Wahid Bhimji?

Prabhat?, Pradeep Dubey’

'Intel Corporation, 2Lawrence Berkeley National Lab

KNN: K-Nearest Neighbors

R/

% Problem: Given a set of multi-dimensional data points, find the k closest neighbors

[(k=3]

Classification => take the majority vote from the neighbors
Regression => take the average value of the neighbors

))
0’0 0’0

INTEL" HPC DEVELOPER CONFERENCE

KNN: Well known applications

/7

% Object classification in images

s Text classification and information retrieval

% Prediction of economic events

% Medical diagnosis

% 3D structure prediction of protein-protein interactions and

/7

% Science applications

INTEL" HPC DEVELOPER CONFERENCE

Scientific Motivation

Simulation of the Universe 3D simulation of magnetic reconnection in The interior of one of the cylindrical
by the Nyx code electron-positron plasma by VPIC code Daya Bay Antineutrino detector

Image Courtesy: Prabhat [LBNL], Oliver Riibel [LBNL], Roy Kalschmidt (LBNL)

INTEL" HPC DEVELOPER CONFERENCE

KNN: K-Nearest Neighbors

R/

% Problem: Given a set of multi-dimensional data points, find the k closest neighbors

[(k=3]

* Naive approach: compute distance from the query point to all points and get the k-closest neighbors
¢ Pros: highly parallel
s Cons: Lot of additional distance computation, not suitable for large scale dataset
(communication heavy)

Can we take advantage of the partitioning?

INTEL" HPC DEVELOPER CONFERENCE

KNN: kd-tree

R/

% Use kd-tree, a space-partitioning data structure for organizing points in a k-dimensional space.

N\,
AN
I AT YV

) {;";'
._1____-

0 gl
1

kd-tree construction

function kd-tree(Points* P)
select an axis (dimension)
compute median by axis from the P
create a tree node
node->median = median
node->left = kd-tree (points in P before median)
node->right = kd-tree (points in P after median)

INTEL" HPC DEVELOPER CONFERENCE

KNN: kd-tree

R/

% Use kd-tree, a space-partitioning data structure for organizing points in a k-dimensional space.

/\1

-:thLi__;E; K/& \Z\\.
1% 0,0 /‘l’ ¢&\LN ¢

kd-tree query

function find-knn(Node node, Query g, Results R)
if node is a leaf node
if node has a closer point than the point in R
add it to R
else
closer node = g is in node->left ? node->left : node->right
far node = g is in node->left ? node->right : node->left
find-knn(closer node, g, R)
if (farthest point in R is far from median)
find-knn(far node, g, R)

INTEL" HPC DEVELOPER CONFERENCE

KNN

KNN has two steps:

1. kd-tree construction => build the kd-tree
2. query => to compute the k-nearest neighbors

What are the challenges in parallelizing KNN!

INTEL" HPC DEVELOPER CONFERENCE

KNN: distributed kd-tree construction
At each node: - - - -

compute median of a selected dimension Po P, P, Ps
move points to the left node and right node A S £ A

Each internal node contains
o Selected dimension
o Median
o Left pointer and right pointer

)
0’0

)
0.0

)
0.0

Each leaf node
o contains a set of points

INTEL" HPC DEVELOPER CONFERENCE

KNN: local kd-tree construction

- compute median of a selected dimension Data parallel
- move points to the left node and right node

Stop when a leaf has
points <= threshold

When we have 4 threads and 4 nodes?

INTEL" HPC DEVELOPER CONFERENCE

KNN: distributed kd-tree querying

« Each processor has a set of queries
o Queries could be local and non-local

O, :
AT P, 0 O

) [] [] [) O !

Po P, P, P O
oX O o
_____________ (_) ""IE OP1

I ofio ©
Po P, P> Ps s

% Non-local queries:
o Ask every node (more computation and communication)
o Transfer ownership

v' Get the local closest k points

v Ask neighbor node with the k" point distance

INTEL" HPC DEVELOPER CONFERENCE

Query

Find query
owner from
global kd-

tree and

send
|

Find top k
neighbors

N s

INTEL" HPC DEVELOPER CONFERENCE

KNN: distributed kd-tree querying

Find local
KNN from
local kd-

tree

N/

. Y
For received
responses,
update
nearest
neighbor

list

N e e/

Find others
that may
contain
better
neighbors

and send

{

For received
queries,
find better
local
neighbors

and send
ey

KNN: Algorithmic Choices [kd-tree construction]

% Choice of split point ol

I
1
1
1
1
1
®le
s Choice of split dimension :
o |
% Choice of bucket size ,.E.
1
|
1

Median, average, or
min + (max-min)/2

Sampling based median computation

INTEL" HPC DEVELOPER CONFERENCE

KNN: Sampling based median (local)

INTEL" HPC DEVELOPER CONFERENCE

KNN: Sampling based median (distributed)

o| —> [y[x] Lalb]

o | &e Y o P

P+ ;. .ob (Z)l,
[a[x[y[b]
3,

Loy m |

[J o
L1o) ebh

Lyle] [a]e]e]

INTEL" HPC DEVELOPER CONFERENCE

KNN: Algorithmic Choices [kd-tree construction]

% Choice of split point

[]
e
[

¢ Choice of split dimension -

+* Choice of bucket size

--—--1----

Maximum range

Imbalanced kd-tree
More communication and computation

INTEL" HPC DEVELOPER CONFERENCE

KNN: Algorithmic Choices [kd-tree construction]

% Choice of split point Data parallel

s Choice of split dimension

+* Choice of bucket size

Thread parallel

Stop when a leaf has

points <= threshold Construction time vs
query time

INTEL" HPC DEVELOPER CONFERENCE

KNN: Experiments

Datasets
Name Particles Dims Time (C) k& Queries (%) Time (Q) Cores
cosmo_small 1.1 B 3 233 5 10 12.2 96
cosmo_medium 8.1 B 3 314 5 10 14.7 768
cosmo_large 687B 3 122 5 10 3.8 49152
plasma_large 1888 B 3 478 5 10 11.6 49152
dayabay_large 27B 10 40 5 0.5 6.8 6144
cosmo_thin S0 M 3 1.1 5 10 1.1 24
plasma_thin 3TM 3 10 5 10 0.8 24
dayabay_thin 27TM 10 18 5 0.5 32 24

Cosmology: Three cosmological N-body simulations datasets using Gadget code [12 GB, 96 GB, 0.8 TB]|
Plasma Physics: 3D simulation of magnetic reconnection in electron position using VPIC code [2.5 TB]
Particle Physics: Signals from cylindrical antineutrino detectors at Daya Bay experiment [30 GB]J

One representative small dataset from each to experiment on single node.

INTEL" HPC DEVELOPER CONFERENCE

KNN: Experiments

Hardware Platform

Edison, a Cray XC30 supercomputing system @NERSC
- 5576 compute nodes, each with two 12-cores Intel® Xeon ® E5-2695 v2
processors at 2.4 GHz and 64 GB of 1866-DDR3 memory.

- Cray Aries interconnect (10 GB/s) bi-directional bandwidth per node

Codes developed in C/C++
- Compiled using Intel® compiler v.15.0.1 and Intel ® MPI library v.5.0.2
Parallelized using OpenMP (within node) and MPI (between nodes)

|

INTEL" HPC DEVELOPER CONFERENCE

KNN: Results (Multinode)

Scalability: Strong scaling (Construction and Querying)

cosmo_large [69B particles], plasma_large [189B particles], and dayabay large [3B particles]

-+~ Construction Querying
8 L*
o L’
C’E g ’
£54 .
o Y .’
o g ’
g3 e
- © 2 L
w
1 <
6144 12288 24576 49152
Cores

(a) Cosmology

4.3x using 8x cores
5.2x using 8x cores

~

Speedup compared
to 12288 cores
N

[y

+-Construction

Querying

24576
Cores

12288 49152

(b) Plasma physics

2.7x using 4x cores
4.4x using 4x cores

INTEL" HPC DEVELOPER CONFERENCE

Speedup compared

to 768 cores

0

KN

N

[y

+-Construction Querying
»
4
%
o/
7’ o
7’
£
d"/
768 1536 3072 6144
Cores

(c) Particle physics

6.5x using 8x cores
6.4x using 8x cores

KNN: Results (Multinode)

Scalability: Weak scaling (Construction and Querying)

The first three cosmology datasets

~+-Construction =e=Querying

w

Y2s

o

(&)

L 20

[*]

—

T 15

@

L

® 10 - n
£

L™

o

c 05

@

£

i 0.0

96 768 6144
Cores

Weak scaling (Cosmology)

2.2x (1.5x) increase when scaled to 64x more cores and data

INTEL" HPC DEVELOPER CONFERENCE

KNN: Results (Multinode)

Runtime breakdown (Construction and Querying)

100 e 100 "
— ﬁ m S w Local kd-tree — %
£ | |- (SMDpacking) & gy Non-overlapped
E 1l Local kdree ; Cammunication
o (thread parallel) 8 | Il Remote KNN
E # Local kd-tree L Identify remote
) (data parallel) o nodes
- Redistribute o e Local KNN
.E partides =
.E = Global kd-tree E 20 # Find owner
construction
0
B =,
& Q@éo aﬁ’a
(a) ' Construction time (b) Querying time

cosmo_large [69B particles], plasma_large [189B particles], and dayabay large [3B particles]

INTEL" HPC DEVELOPER CONFERENCE

KNN: Results (single node)

Scalability (Construction and Querying)

- COSMI plasma -=dayabay

(a) Construction

20x using 24 cores (22.4x)

INTEL" HPC DEVELOPER CONFERENCE

—— COSMD plasma —-+=dayabay
24
818
12 ~
i
&]
]

Cores

(b) Querying

12x using 24 cores (16.2x)

KNN: Results (single node)

Comparison to previous implementations

IINFLANN ©* ANN ~ PANDA-1 i PANDA-24 NIFLANN = ANN — PANDA-1 I FLANN = PANDA-24
100 —1,000 - — 100
—— _—]
Q m —
E 3 ;
b &o a
@ 10 - S & 10
= W -—
3 £ 100 E
= =25 [=] =]
g 1 = = = 0 b 1
1] B2 = = i bt
! = = = =
= =2 = = o £
2 0.1 = = = E 10 E 0.1
E N = I= - T 1 = . m
[COSmo plasma dayabay COSmMo plasma dayabay = COSMO plasma dayabay
{a) Training (b) Classification (1 thread) (c) Classification (24 thread)
2.6x on single core 48x on single core 22x on 24 cores

59x on 24 cores

INTEL" HPC DEVELOPER CONFERENCE

KNN: Intel Xeon Phi (KNL) processor

Datasets used for experiments on KNL

Construction Querying
Name Particles Dims Particles Dims
psf_mod_mag 2M 10 10M 10
all_mag M 15 10M 15
COSTO 254M 3 254M 3
plasma 250M 3 250 3

Comparing KNL to
Titan Z [1] performance

2.0
- = # Titan Z (1 card)
516 = Il KNL (1 node)
% = 3 Titan Z (4 cards)
€12 == =KNL(4 nodes)
1 =
c =
§ =
2 0.8
<
w
2
5 0.4
o

0.0

psf_mod_mag all_mag

Up to 3.5X performance improvement

[1] Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger Buffer k-d Trees on Multi-Many-Core

Systems. http://arxiv.org/abs/1512.02831, Dec 2015

INTEL" HPC DEVELOPER CONFERENCE

KNN: Intel Xeon Phi (KNL) processor

Multinode KNL

KNL Scaling (6.5X speedup using 8X more node)

KNL Scaling
——psf_mod_mag-KNL ——all_mag-KNL
——psf_mod_mag-TITAN ——al|_mag-TITAN ——astro —plasma % Each node has partial view of the entire
128 8 - kd-tree (keeps global kd-tree and only its
64 own local kd-tree)
g. o 24 B3 { . ; . Ve
3 16 | 3 % 127X larger construction dataset, 25X
§ 8 § larger query dataset
4 w2 -
2 ¢ Titan Z [1] based implementation does
1 — L not use distributed kd-tree, hence
2 4 8 16 32 64 128 1 incapable to deal massive dataset
Nodes 8 16 32 64
Nodes

Each node keeps the entire kd-tree
similar to [1]

[1] Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger Buffer k-d Trees on Multi-Many-Core
Systems. http://arxiv.org/abs/1512.02831, Dec 2015

INTEL" HPC DEVELOPER CONFERENCE

Conclusions

U This is the first distributed kd-tree based KNN code that is demonstrated to scale up to ~50,000 cores.

O This is the first KNN algorithm that has been run on massive datasets (100B+ points) from diverse
scientific disciplines.

U We show that our implementation can construct kd-tree of 189 billion particles in 48 seconds on utilizing
~50,000 cores. We also demonstrate computation of KNN of 19 billion queries in 12 seconds.

O We successfully demonstrate both strong and weak scalability of KNN implementation.
U We showcase almost linear scalability un to 128 KNI nodes

U Our implementation is more than an order of magnitude faster than state-of-the-art KNN implementation.

INTEL" HPC DEVELOPER CONFERENCE

Acknowledgements

« Daya Bay Collaboration for providing access to datasets
« Zarija Lukic for providing access to Gadget datasets
« Vadim Roytershteyn for providing access to VPIC datasets

« Tina Declerck and Lisa Gerhardt for facilitating large scale runs on NERSC

INTEL" HPC DEVELOPER CONFERENCE

INTEL” HPC DEVELOPER CONFERENCE
FUEL YOUR INSIGHT

Thank you for your time

aaaaaaa

