

Mostofa Patwary1, Nadathur Satish1, Narayanan Sundaram1,
Jilalin Liu2, Peter Sadowski2, Evan Racah2, Suren Byna2, Craig Tull2, Wahid Bhimji2

Prabhat2, Pradeep Dubey1

1Intel Corporation, 2Lawrence Berkeley National Lab

Massively Parallel K-Nearest Neighbor
Computation on Distributed Architectures

KNN: K-Nearest Neighbors

3

v  Problem: Given a set of multi-dimensional data points, find the k closest neighbors

k = 3

v  Classification => take the majority vote from the neighbors
v  Regression => take the average value of the neighbors

KNN: Well known applications

4

v  Object classification in images

v  Text classification and information retrieval

v  Prediction of economic events

v  Medical diagnosis

v  3D structure prediction of protein-protein interactions and

v  Science applications

Scientific Motivation

5

Simulation of the Universe
by the Nyx code

3D simulation of magnetic reconnection in
electron-positron plasma by VPIC code

Image Courtesy: Prabhat [LBNL], Oliver Rübel [LBNL], Roy Kalschmidt (LBNL)

The interior of one of the cylindrical
Daya Bay Antineutrino detector

KNN: K-Nearest Neighbors

6

v  Problem: Given a set of multi-dimensional data points, find the k closest neighbors

k = 3

v  Naïve approach: compute distance from the query point to all points and get the k-closest neighbors
v  Pros: highly parallel
v  Cons: Lot of additional distance computation, not suitable for large scale dataset

(communication heavy)

Can we take advantage of the partitioning?

KNN: kd-tree

7

kd-tree construction

v  Use kd-tree, a space-partitioning data structure for organizing points in a k-dimensional space.

function kd-tree(Points* P)
select an axis (dimension)
compute median by axis from the P
create a tree node
node->median = median
node->left = kd-tree (points in P before median)
node->right = kd-tree (points in P after median)

KNN: kd-tree

8

kd-tree query

v  Use kd-tree, a space-partitioning data structure for organizing points in a k-dimensional space.

function find-knn(Node node, Query q, Results R)
if node is a leaf node

if node has a closer point than the point in R
add it to R

else
closer_node = q is in node->left ? node->left : node->right
far_node = q is in node->left ? node->right : node->left
find-knn(closer_node, q, R)
if(farthest point in R is far from median)

 find-knn(far_node, q, R)

KNN

9

KNN has two steps:

1. kd-tree construction => build the kd-tree
2. query => to compute the k-nearest neighbors

What are the challenges in parallelizing KNN!

KNN: distributed kd-tree construction

10

v  At each node:
compute median of a selected dimension
move points to the left node and right node

v  Each internal node contains
o  Selected dimension
o  Median
o  Left pointer and right pointer

v  Each leaf node
o  contains a set of points

p0 p1 p2 p3

P0 p1 P2 p3

P0 P1 P2 P3

KNN: local kd-tree construction

11

When we have 4 threads and 4 nodes?

Data parallel

Thread parallel

Global kd-tree
- compute median of a selected dimension
- move points to the left node and right node

t0 t1 t2 t3

Stop when a leaf has
points <= threshold

KNN: distributed kd-tree querying

12

v  Each processor has a set of queries
o  Queries could be local and non-local

P0 P1 P2 P3

P0 P1 P2 P3

Xo
o

o

o

o

o

o

o o

o o o
oo

o

o
P2

P3

P0

P1

X

v  Non-local queries:
o  Ask every node (more computation and communication)
o  Transfer ownership

ü  Get the local closest k points
ü  Ask neighbor node with the kth point distance

Query

Find query
owner from
global kd-
tree and

send

Find local
KNN from
local kd-

tree

Find others
that may
contain
better

neighbors
and send

For received
queries,

find better
local

neighbors
and send

For received
responses,

update
nearest

neighbor
list

Find top k
neighbors

KNN: distributed kd-tree querying

KNN: Algorithmic Choices [kd-tree construction]

14

v  Choice of split point

v  Choice of split dimension

v  Choice of bucket size

Median, average, or
min + (max-min)/2

Sampling based median computation

KNN: Sampling based median (local)

15

y x a b
(1)

a x y b

(2)

(3)

x

a b

y

KNN: Sampling based median (distributed)

16

a

x

b

y x a b
(1) p0

p1

a x y b

(2)

(4)x

a b

y

y

b

(3)

ay

x

p0

p1

KNN: Algorithmic Choices [kd-tree construction]

17

v  Choice of split point

v  Choice of split dimension

v  Choice of bucket size

Maximum range

Imbalanced kd-tree
More communication and computation

KNN: Algorithmic Choices [kd-tree construction]

18

v  Choice of split point

v  Choice of split dimension

v  Choice of bucket size

Data parallel
Global kd-tree

Stop when a leaf has
points <= threshold

Thread parallel

Construction time vs
query time

KNN: Experiments

19

Datasets

-  Cosmology: Three cosmological N-body simulations datasets using Gadget code [12 GB, 96 GB, 0.8 TB]
-  Plasma Physics: 3D simulation of magnetic reconnection in electron position using VPIC code [2.5 TB]
-  Particle Physics: Signals from cylindrical antineutrino detectors at Daya Bay experiment [30 GB]

-  One representative small dataset from each to experiment on single node.

KNN: Experiments

20

Hardware Platform

-  Edison, a Cray XC30 supercomputing system @NERSC

-  5576 compute nodes, each with two 12-cores Intel® Xeon ® E5-2695 v2

 processors at 2.4 GHz and 64 GB of 1866-DDR3 memory.

-  Cray Aries interconnect (10 GB/s) bi-directional bandwidth per node

-  Codes developed in C/C++

-  Compiled using Intel® compiler v.15.0.1 and Intel ® MPI library v.5.0.2

-  Parallelized using OpenMP (within node) and MPI (between nodes)

KNN: Results (Multinode)

21

Scalability: Strong scaling (Construction and Querying)
cosmo_large [69B particles], plasma_large [189B particles], and dayabay_large [3B particles]

4.3x using 8x cores
5.2x using 8x cores

2.7x using 4x cores
4.4x using 4x cores

6.5x using 8x cores
6.4x using 8x cores

KNN: Results (Multinode)

22

The first three cosmology datasets

2.2x (1.5x) increase when scaled to 64x more cores and data

Scalability: Weak scaling (Construction and Querying)

KNN: Results (Multinode)

23

Runtime breakdown (Construction and Querying)

(a) (b)

cosmo_large [69B particles], plasma_large [189B particles], and dayabay_large [3B particles]

KNN: Results (single node)

24

Scalability (Construction and Querying)

12x using 24 cores (16.2x)20x using 24 cores (22.4x)

KNN: Results (single node)

25

Comparison to previous implementations

2.6x on single core 48x on single core 22x on 24 cores

59x on 24 cores

KNN: Intel Xeon Phi (KNL) processor

26

Datasets used for experiments on KNL

Comparing KNL to
Titan Z [1] performance

[1] Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger Buffer k-d Trees on Multi-Many-Core
Systems. http://arxiv.org/abs/1512.02831, Dec 2015

Up to 3.5X performance improvement

KNN: Intel Xeon Phi (KNL) processor

27

Multinode KNL

[1] Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, and Tom Heskes. Bigger Buffer k-d Trees on Multi-Many-Core
Systems. http://arxiv.org/abs/1512.02831, Dec 2015

KNL Scaling (6.5X speedup using 8X more node)

v  Each node has partial view of the entire
kd-tree (keeps global kd-tree and only its
own local kd-tree)

v  127X larger construction dataset, 25X

larger query dataset

v  Titan Z [1] based implementation does

not use distributed kd-tree, hence
incapable to deal massive dataset

KNL Scaling

Each node keeps the entire kd-tree
similar to [1]

Conclusions

28

q  This is the first distributed kd-tree based KNN code that is demonstrated to scale up to ∼50,000 cores.

q  This is the first KNN algorithm that has been run on massive datasets (100B+ points) from diverse
scientific disciplines.

q We show that our implementation can construct kd-tree of 189 billion particles in 48 seconds on utilizing
∼50,000 cores. We also demonstrate computation of KNN of 19 billion queries in 12 seconds.

q  We successfully demonstrate both strong and weak scalability of KNN implementation.

q  We showcase almost linear scalability un to 128 KNL nodes

q Our implementation is more than an order of magnitude faster than state-of-the-art KNN implementation.

Acknowledgements

•  Daya Bay Collaboration for providing access to datasets

•  Zarija Lukic for providing access to Gadget datasets

•  Vadim Roytershteyn for providing access to VPIC datasets

•  Tina Declerck and Lisa Gerhardt for facilitating large scale runs on NERSC

29

Thank you for your time
Prabhat

prabhat@lbl.gov

www.intel.com/hpcdevcon

