intel)

Intel® Memory Drive Technology for Redis

Performance Evaluation Guide
May 2018

Document Number: 337669-001US

Intel® Memory Drive Technology

Ordering Information

Contact your local Intel sales representative for ordering information.

Revision History

?I%VJISL%? Description Revision Date
001 ¢ Initial release May 2018

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address
exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your
device or system.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your
purchase. Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any
difference in system hardware or software design or configuration may affect actual performance.

All documented performance test results are obtained in compliance with JESD218 Standards; refer to individual sub-sections
within this document for specific methodologies. See www.jedec.org for detailed definitions of JESD218 Standards.

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this
document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmark
data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available
for purchase.

For copies of this document, documents that are referenced within, or other Intel literature please contact you Intel
representative.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Intel, Optane, 3D XPoint and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2018 Intel Corporation. All rights reserved.

Redis Performance Evaluation Guide May 2018
2 337669-001US

http://www.jedec.org/

Intel® Memory Drive Technology

Contents

1 Introduction

2 Redis Performance Benchmark

2.1 Benchmark Landscape

2.4 Summary

3 Benchmark Setup In details

5 Running the Benchmark

5.2 Collecting Results

6 Conclusions

Figures

Figure 1: DRAM-like Performance

Tables

5

1.1 Memory Use and the Need for More Memory per Server 5
1.2 The Scalability Challenge for In-memory Deployments 5
1.3 Intel® Memory Drive Technology Benefits and Capabilities 5

6

6

2.2 Intel® Memory Drive Technology Measured Performance 7
2.3 Cost Efficiency and Overall Savings 8

8

9

4 System and Benchmark Installation and Configuration 10
4.1 Server System Installation and Configuration 10
4.2 Master Client (load) System Installation and configuration 10
4.3 Client (load) System Installation and configuration 18
4.4 System Connectivity Configuration 19

20

5.1 Initialization the Benchmark on the master client 20

20

5.3 Results obtained in the lab 21

22

5

Figure 2: Client and Server Configuration #1 6
Figure 3: Client and Server Configuration #2 7
Figure 4: Performance Comparison: DRAM vs Intel® Memory Drive Technology 7
Figure 5: DRAM vs Intel® Memory Drive Technology Cost Structures 8
21

Table 1: Test Results

May 2018
337669-001US

Redis Performance Evaluation Guide
3

Terms and Acronyms

Intel® Memory Drive Technology

Term Definition
AHCI Advanced Host Controller Interface

API Application Programming Interface

ATA Advanced Technology Attachment

DIPM Device Initiated Power Management

GB Gigabyte

HDD Hard Disk Drive

KB Kilobytes

1/O Input/Output (the typical block used in specifications is 4 kB)
I0PS Input/Output Operations Per Second

MB Megabytes

NCQ Native Command Queuing

PCH Platform Controller Hub

RAID Redundant Array of Independent Disks

SATA Serial Advanced Technology Attachment

SSD Solid State Drive

Sources

Additional information for topics discussed in this guide:

e https://www.intel.com/content/www/us/en/software/intel-memory-drive-technology.html

Redis Performance Evaluation Guide

4

May 2018
337669-001US

https://www.intel.com/content/www/us/en/software/intel-memory-drive-technology.html

intel

Intel® Memory Drive Technology

1 Introduction

1.1 Memory Use and the Need for More Memory per Server

In-memory data-stores and caching engines, such as Redis and Memcached, are widely used in a variety of
application domains, such as Ad-Tech, Financial Services, Gaming, Healthcare, and IOT. In-memory data-stores can
improve application performance as well as reduce scale-out costs.

Such in-memory caching engines improve application performance by storing frequently accessed data in the main
memory, so they can be retrieved quickly without the need to access the persistent data store.

In order to achieve the highest performance, the entire dataset is stored in-memory. If the data being handled is
larger than the available memory in a single server, these caching engines allow for scale-out to multiple nodes
(using sharding) according to the maximum amount of memory available per node.

1.2 The Scalability Challenge for In-memory Deployments

The amount of memory available on a single server, as well as prohibitive DRAM pricing, can limit in-memory
computing deployments. Due to modern server architecture, the maximum amount of memory per node is capped
at a maximum of 12 DIMMs per socket, and in many cases, with high-density servers, as few as 6-8 DIMMs per
socket.

These limitations, combined with the fact that the per GB cost of DRAM increases exponentially for DIMMs larger
than 64GiB, leads to a practical limit of 768GiB to 1.5TiB per dual socket node.

As a result, the number of nodes required for a large-scale solution (of a single tenant and/or multi-tenants on the
same infrastructure), is determined by the amount of memory in each node, rather than by the compute capacity of
the node. This is evident in typical deployment scenarios where CPU cluster utilization is commonly 10%-20%.

In order to implement large-scale solutions, organizations are forced to either use expensive high-density DIMMs,
or increase the number of nodes. Both of these options result in much higher infrastructure costs per application,
as well as an increase to the data-center footprint.

1.3 Intel® Memory Drive Technology Benefits and Capabilities

Increasing the total memory per node, or reducing the cost per GiB of memory, can significantly improve the cost
structure of such in-memory caching engines, and improve their adaptability to additional use-cases.

The Intel® Memory Drive Technology is a revolutionary software-defined memory (SDM), which transparently
integrates Intel® Optane™ SSDs into the memory subsystem and makes it appear like DRAM to the OS and
applications.

Intel® Memory Drive Technology increases memory capacity beyond DRAM limitations in a significantly more cost-
effective way, and delivers DRAM-Llike performance to the operating system and applications in a completely
transparent manner. In addition, no changes are required to the OS or applications.

Figure 1: DRAM-like Performance

4 Operating System I ' Operating System R

Intel® Memory Drive Technology

INTRNNNNTN] INTRNNANTN]
E F - Dooooo _ E E_ joooooo;
E E|l=——| B sm 3 E sm
E CPU E - joooooo} | |2 a 3 CPU E- W a
-Illlllllll- == -llllllllll-

INTNNNNNT] » 100000101
T o | - EEEEEE {Toon IE
3 E E E uvm
(] e EE] [=10H
_IIIIIIIII- -IIIIIIIII—

—_—] r_
\ COMPUTE MEMORY STORAGE / \CUMPUI[MEMORY STUR@
8
May 2018 Redis Performance Evaluation Guide

337669-001US 5

(intel
Intel® Memory Drive Technology

2 Redis Performance Benchmark

The Redis benchmark uses high concurrency SET/GET operations of small (1kB) and large (100kB) messages
(reflecting small values and large objects), in which the Redis server and client/load system are connected
over 10GbE.

Since it is impossible to benchmark against a 6TB DRAM-only server, our comparison was performed using a
768GB DDR4 DRAM-only server, compared to a server with 192GB DDR4, augmented with Intel® Memory Drive
Technology, for a total of 768GB." The amount of memory consumed by Redis was ~700GB.

2.1 Benchmark Landscape

This benchmark testing is using a server machine with Redis server software installed, and client systems (one or
many, depends on your lab environment) which is used to generate a high load of “SET" and “GET" keys and values
on/from the Redis server. In order to be able to generate substantial load to test the performance of the system
running the Redis server, the client system needs to have a large number of cores (recommended: use double the
number of sockets of your Redis server to generate the load), and the clients and server machines need to be
connected with at-least T0GbE Ethernet connection between them.

In this benchmark, the first (or only) client will also serve as the “master client” which will orchestrate the launch of
Redis servers on the system and Redis clients on the client machines.

« The Redis server is started with multiple instances as requested (typically a multiple of the number of logical
CPUs on the system in order to have enough concurrency for optimal performance).

« As Redis is typically configured to not use persistent storage, the instances are ‘empty” at the start of each
scenario.

« Once all Redis instances are started, Redis cache is dropped, and the client starts to SET keys on all
instances in parallel.

e Once SET is done, the client starts GET all keys from all instances in parallel.

« In this benchmark, the 2 steps above are repeated 3 times and detailed statistics and histograms are
collected and calculated.

Figure 2: Client and Server Configuration #1

Load gen. system

Redis server system
10GigE

2S system

45 system

Redis Performance Evaluation Guide May 2018
6 337669-001US

Intel® Memory Drive Technology

Figure 3: Client and Server Configuration #2

Load gen. systems

Redis server system

s sysem

10GbE Network

10GbE Switch

2.2 Intel® Memory Drive Technology Measured Performance

Figure 4: Performance Comparison: DRAM vs Intel® Memory Drive Technology

100KB Message Size 1KB Message Size
1176 11.78 [FER/: — 107 1.12
['r]
- 5
a =
3 =
=
= (73]
s S G £S5 G
o
|_

DRAM m IMDT DRAM = SDM
99 percentile latency: <17ms 99 percentile latency: <300ps

NOTES:
Test and System Configuration:

Redis Server 1# (DRAM Mode):

CPU: Intel® Xeon® E5-2687W v4 3.0GHz 30MB 160W 12 cores, CPU Sockets: 2, RAM Capacity: 32Gx24, RAM Model: DDR4, RAM
Stuffing: NA, DIMM Slots Populated: 24 slots, PCle Attach: CPU (not PCH lane attach), Chipset: Intel C610 chipset, BIOS:
SE5C610.86B.01.01.0019.101220160604, Switch/ReTimer Model/Vendor: Intel A2U44X25NVMEDK, OS: CentOS 7.3.1611,
Kernel: 3.0.10-693, NVMe Driver: Inbox, C-states: Disabled, Hyper Threading: Disabled, CPU Governor (through OS):
Performance Mode (Default Mode: Balanced)

Redis Server 2# (Intel® Memory Drive Technology Mode):

CPU: Intel® Xeon® E5-2687W v4 3.0GHz 30MB 160W 12 cores, CPU Sockets: 2, RAM Capacity: 32Gx6, RAM Model: DDR4, RAM
Stuffing: NA, DIMM Slots Populated: 6 slots, PCle Attach: CPU (not PCH lane attach), Chipset: Intel C610 chipset, BIOS:
SE5C610.86B.01.01.0019.101220160604, Switch/ReTimer Model/Vendor: Intel A2U44X25NVMEDK, OS: Cent0OS 7.3.1611,
Kernel: 3.0.10-693, NVMe Driver: Inbox, C-states: Disabled, Hyper Threading: Disabled, CPU Governor (through OS):
Performance Mode (Default Mode: Balanced), 2 x 375GB Intel® Optane™ SSD DC P4800X U.2

Redis Clients:

CPU: Intel® Xeon® E5-2687W v4 3.0GHz 30MB 160W 12 cores, CPU Sockets: 2, RAM Capacity: 32Gx6, RAM Model: DDR4, RAM
Stuffing: NA, DIMM Slots Populated: 6 slots, PCle Attach: CPU (not PCH lane attach), Chipset: Intel C610 chipset, BIOS:
SE5C610.86B.01.01.0019.101220160604, Switch/ReTimer Model/Vendor: Intel A2U44X25NVMEDK, OS: CentOS 7.3.1611,
Kernel: 3.0.10-693, NVMe Driver: Inbox, C-states: Disabled, Hyper Threading: Disabled, CPU Governor (through OS):
Performance Mode (Default Mode: Balanced)

May 2018 Redis Performance Evaluation Guide
337669-001US 7

p Intel® Memory Drive Technology
2.3 Cost Efficiency and Overall Savings

For a significantly lower cost than DRAM, Intel® Memory Drive Technology enables reaching the same memory
configuration while allowing for larger amounts of memory, much larger than the practical limitations of a given
server.

The chart below compares the different cost structures.

Figure 5: DRAM vs Intel® Memory Drive Technology Cost Structures

29TiB

= 1.5TiB
8

o o o e e e e
O L4102 Savings |
=
=
¢ IMDT
7

DRAM-only Intel® Memory Drive Technology + 256GB Intel® Memory Drive Technology +384GB
(1.5Tib System Memory) (1.5TiB System Memory) (2.9 TiB System Memory)
40% Cost Savings 2X Memory Capacity

e DRAM-only server with 1.5 TiB of memory

e Server configured with 256GiB RAM + Intel® Memory Drive Technology to reach the same overall amount
of memory (1.5 TiB), at 40% lower cost than DRAM-only.

e Server configured with 384GiB RAM + Intel® Memory Drive Technology to reach almost double the total
amount of memory (2.9 TiB total) for a similar cost.

Additional cost savings are achieved due to the Intel® Memory Drive Technology solution requiring a smaller
datacenter footprint, and reduced energy and maintenance costs.

2.4 Summary

Leveraging Intel® Memory Drive Technology provides a cost-effective way to support nodes with up to 8x more
memory than server's specifications’ limits, thereby enabling a cost-effective infrastructure for In-Memory data-
stores and caching engines, with minimal impact on performance.

Redis Performance Evaluation Guide May 2018
8 337669-001US

Intel® Memory Drive Technology

3 Benchmark Setup In details

For the workload in our example, at least two client systems are required:

e One will be running Redis server
e One (or more) will be the load generator which will be using a Redis client program
If using just one client system, we recommended the following in order to generate the load on the server system:
o Alarge (high core count) system

o Only use a high speed Ethernet connection to the server system (at least 10GE)

In this document, we will focus on a configuration using Centos* (7.3 or 7.4). Those steps can be applied to other
distributions, with minor changes in the installation process. We assume that the OS has been pre-installed.

All scripts are written such that you can use more than one client; however it will also work if you configure
only one client.

May 2018 Redis Performance Evaluation Guide
337669-001US 9

4 System and Benchmark Installation and Configuration

Intel® Memory Drive Technology

4.1 Server System Installation and Configuration

This procedure assumes that the system used has the latest CentOS (7.3 or 7.4) installed, and updated to latest
version by executing “yum -y update”.

1. Install a recent copy of Centos (CentOS 7.3 or 7.4) or upgrade your system
2. Login to the server system as “root”

3. Make sure it is updated:

I # yum update -y I

4, Create afolder named “redis™

I # mkdir /root/redis I

5. Step into the “redis” folder:

I # cd /root/redis I

6. Obtain the latest Redis software:

I # wget http://download.redis.io/releases/redis-4.0.2.tar.gz I

7. Open the tar file:

| # tar xzf redis-4.0.2.tar.gz |

8. Step into the extracted folder:

| # cd redis-4.0.2 |

9. Build the Redis software:

| # make |

4.2 Master Client (load) System Installation and configuration

This procedure assumes that the system used has the latest CentOS (7.3 or 7.4) installed, and updated to latest
version by executing “yum -y update”.

1. Install a recent copy of Centos (CentOS 7.3 or 7.4) or upgrade your system
2. Login to the server system as “root”

3. Make sure it is updated:

| # yum update -y |

4. Ensure the “screen” packdge is installed

| # yum install -y screen |

5. Create a folder named “redis™:

I # mkdir /root/redis I

6. Step into the “redis” folder:

I #cd /root/redis I

Redis Performance Evaluation Guide May 2018
10 337669-001US

intel

Intel® Memory Drive Technology

7. Putthe runscript below in “do_it.sh”.
Please make sure that REDISROOT is defined correctly in the script (in case you are using a directory
different than /root/redis/).

Please note that this script assumes password-less connection is configured between master-client,
clients and server machines (as is outlined in more details in section 4).

Configuring the invocation script (do_it.sh):

(@) SERVER- IP Address of server system (10/25GB ethernet connection)

(b) CLIENT_IP list of client(s) IP addresses

(c) SERVER_CORES Number of locical CPUs on server system

(d) SRV_OVERIDE Number of Redis servers to run (Recommended to run a multiple of the number of
logical CPUs on the server machine)

The invocation script below includes examples of running the benchmark with long value (100,000) and
short value (10,000) keys.

#!/bin/sh
set -x

#Logical CPU count of the machine running the redis server

SERVER_CORES=72

#IP address of the machine running the redis server, so it can be seamlessly accessed from the
client machine

SERVER=192.168.3.1

Total Number of redis servers to run (Typically a multiple of the number of CPUs on the server
machine)

SRV_OVERIDE=288

VER=4.0.2

REDISTROOT=/root/redis/redis-$VER

REDISRUNS=3
#A11 clients IP addresses (including master-client)
CLIENT_IP=(192.168.1.92 192.168.1.90)

#i#####H###E DO not edit below this Tine ###########H#H#HHHH#HHHIHAH#HBBHHHH#H1Y
#Address of master-client
CLIENT=${CLIENT_IP[0]}
#calculate the number clinets
CLIENT_NUM=${#CLIENT_IP[@]}
#execution log
SCRIPT_LOG=script_ date +%Y%m%d-%H%M%S .Tog
#Configure utility prefix
for fname in “ssh $SERVER "echo -n /usr/local/bin/????version | sed
's/MCF\)\(\/usr\/Tocal\/bin\/vsmpversion\)\ (.*\)$/\1\3 \2/'""; do
cn="ssh $SERVER "strings $fname 2>&1 | grep -io \"vsmpversion\"|wc -1""
if [$cn != 0]; then UTILPX= basename $fname | awk '{print substr($0,0,4)}'"; break; fi

done
Compile test program
gcc -g -02 -fopenmp -o test test.c -I$REDISTROOT/deps/hiredis -L$REDISTROOT/deps/hiredis -Thiredis
if [$? -ne 0]; then

echo Compilation of benchmark failed. exiting.

exit 1
fi
BUHHHBHHHH BB HHH R R HHH BB HH B LR H B LHH R R RESH
exec_on_server()

while : ; do
ssh $SERVER "$1"
[$7 -1e 1] && break
sleep 1

done

}
HARBH AR B R R R B BB BB RH R AR
echo "Total redis servers: $SRV_OVERIDE"
#Prepare server only once

echo "Preparing the server..."

#Stop un-needed services on server

May 2018 Redis Performance Evaluation Guide
337669-001US 11

Intel® Memory Drive Technology

echo 'for i in ksm.service ksmtuned.service irgbalance.service tuned.service firewalld
iptables; do echo $i;systemct] stop $i;done' > /tmp/run_on_server$$.sh

ssh $SERVER 'bash -s' < /tmp/run_on_server$$.sh

rm -f /tmp/run_on_server$$.sh

#Set CPU power govoner to performance

exec_on_server 'cpupower frequency-set -g performance; cpupower set -b 0'

#Distribute NIC irq acroos CPU cores

MAC="arp $SERVER | grep ether | awk '{print $3}'"

msi_dir="ssh $SERVER "grep $MAC /sys/class/net/*/address" |sed 's/[A/]1*$/device\/msi_irqs/"'"

#

msis="ssh $SERVER "Ts -1 $msi_dir | wc -1" °

step=$ (($SERVER_CORES/msis))

step=$((step<l?1l:step))

msi_Tlist="ssh $SERVER "1s $msi_dir"

j=0

for msi in $msi_list; do
current="ssh $SERVER "cat /proc/irq/$msi/smp_affinity_Tist""
new="$j-$((j+step-1))"
exec_on_server "echo $new > /proc/irq/$msi/smp_affinity_Tist"
now="ssh $SERVER "cat /proc/irq/$msi/smp_affinity_list""
j=$((j+step))

j=$((j>=SERVER_CORES?j=0:3))

done

VER=4.0.2
REDISTROOT=/root/redis/redis-$VER
REDISTMP=/tmp/redis
LOCALTMP=/tmp/redis.txt
BINDIR=$REDISTROOT/src
REDISBASE=6379

MAXTHREADS=256

Pttt dddda il et
kill_all_redis_servers()

{
echo "Removing any running redis servers"
while : ; do
ssh $SERVER 'killall -9 redis-server'
[$7 -le 1] & break
sleep 1
done

get_server_process_list()

while : ; do
ssh $SERVER 'ps -efa' 2>/dev/null
[$7 -eq 0] && break
sleep 1

done

}
get_server_free_memory()

while : ; do
ssh $SERVER "free -g" 2>/dev/null
[$7 -eq 0] && break
sleep 1

done

3
s

#calculate new start port

Get memory information
memory="get_server_free_memory | grep Mem: | head -1 | awk '{print $2}'"

echo Overiding $REDISNMBR with $SRV_OVERIDE
REDISNMBR=$SRV_OVERIDE
REDISKLEN=1000000
if ["$#" -ge 2]; then
REDISKLEN=$2
fi

#Parameters used to calculate the required amount of memory as base and needed by redis per key
RAMPCT=90
BASEMEM=8

Redis Performance Evaluation Guide May 2018
12 337669-001US

Intel® Memory Drive Technology

KEYSIZEFACTOR=110

cat << EOF > /tmp/runclient.sh
#!/bin/bash
while : ; do
killall -9 redis-server
sleep 10
num=\ "ps -efa | grep redis | grep -v grep | wc -1\"
echo "\$num servers are up. We need 0."
[\$num -ne 0] || break
echo " servers are up (\$num != 0). retrying."
done

rm -rf $REDISTMP

sysct]l -wgq vm.overcommit_memory=1
sysct]l -wg net.core.somaxconn=1024

cpus=\"cat /proc/cpuinfo | grep processor | wc -1\°
step=\$((cpus/$SREDISNMBR))

step=\$((step<1l?1l:step))

j=0

mkdir -p /etc/redis/

for port in \ seq $REDISBASE $(($REDISBASE + $REDISNMBR - 1))\ ;do
mkdir -p $REDISTMP/redis-\$port
chmod 777 $REDISTMP/redis-\$port

rm -f /etc/redis/\$port.conf

cp $REDISTROOT/redis.conf /etc/redis/\$port.conf

sed -i "s/Abind .*/bind $SERVER/" /etc/redis/\$port.conf

sed -i "s/Aprotected-mode yes/protected-mode no/" /etc/redis/\$port.conf

sed -i "s/port 6379/port \$port/" /etc/redis/\$port.conf

sed -i "s|dir ./|dir $REDISTMP/redis-\$port/|" /etc/redis/\$port.conf

sed -i "s|logfile \"\"|logfile $REDISTMP/redis-\$port.log|" /etc/redis/\$port.conf
sed -i "s/Asave /# save/" /etc/redis/\$port.conf

taskset -c \$j-\$((j+step-1)) $BINDIR/redis-server /etc/redis/\$port.conf &

j=\$((G+step))
3=\$((G>=cpus?j=0:3))
done
EOF

ki1ll_all_redis_servers

echo "Getting proccess Tist from server (if stuck restart sshd on server)..."
while : ; do
num="get_server_process_list | grep redis | wc -1°
[$num -eq 0] && break
echo "$num servers still up on $SERVER"
sleep 10
done
echo "Done"
sleep 5

while : ; do
ssh $SERVER "${UTILPX}ct]l --nna=on ; echo never > /sys/kernel/mm/transparent_hugepage/enabled"
[$7 -eq 0] && break
sleep 2

done

cmd="uname -a; echo; free -g; echo; uptime; echo; grep A
/sys/kernel/mm/transparent_hugepage/enabled; echo; Tscpu; echo; if [-x
/usr/local/bin/${uTILPX}Vversion]; then ${UTILPX}version -vvv; ${UTILPX}ctl --status; else echo
'Running NATIVE'; fi; echo"
rm -f setup.Tlog
for host in SERVER CLIENT; do

(echo "===>> $host system -"; ssh “eval echo "$"${host} "$cmd") >> setup.log 2>&1
done

while : ; do
echo "starting $REDISNMBR servers on $SERVER"
#ssh $SERVER 'bash -s' < /tmp/runclient.sh 2>/dev/null &
ssh $SERVER 'bash -s' < /tmp/runclient.sh &

PID=$!
trap "{ echo -e \"\h===============\nQuit Requested.\n===============\" ; kill $PID ;
kil1_all_redis_servers ; exit 1; }" INT
sleep 10
May 2018 Redis Performance Evaluation Guide

337669-001US 13

Intel® Memory Drive Technology

[-e /proc/$PID] && break
echo "Failed... Retrying..."
done

echo "Getting process list from server (if stuck restart sshd on server)..."
while : ; do
num="get_server_process_list | grep redis | wc -1°
echo "$num servers are up. We need $REDISNMBR."
[$num -ne $REDISNMBR] || break
echo " servers are not up ($num != $REDISNMBR). waiting."
sleep 2
done
sleep 3
echo REDIS setup finished

Server is ready , lets run the clients
for len in 1000 100000 ; do
#Calculating required number of redis keys, based on available memory
REDISKEYS=$ (((memory-BASEMEM) *1024*1024%1024*RAMPCT/KEYSIZEFACTOR/1en))
REDISKEYS=$((REDISKEYS/10000))
REDISKEYS=$ ((REDISKEYS*10000))
#Ruild Redis servers start script
for j in “seq 1 $REDISRUNS ; do
echo "Running instance $j of $REDISRUNS"
MYSERVERS=$ ((REDISNMBR/CLIENT_NUM))
client_num=0
for ip in ${CLIENT_IP[*]}; do
Togts=redis.log.$ip. date +%Y%m%d-%H%M%S .$]j
cp setup.log $logts
new_base=$((client_num*MYSERVERS))
new_base=$ ((REDISBASE+new_base))
echo "'date” Starting $MYSERVERS clients on $ip starting at port $new_base" >> $SCRIPT_LOG
echo "“date’ Running /root/redis/test $SERVER $new_base $Ten $((REDISKEYS/REDISNMBR))" >>
$SCRIPT_LOG
echo "#!/bin/bash" > /tmp/screen_$ip
echo "ssh $ip \"export OMP_NUM_THREADS=$MYSERVERS ;cd /root/redis/; time /root/redis/test
$SERVER $new_base $1en $((REDISKEYS/REDISNMBR))\" >> $logts" >> /tmp/screen_$ip
chmod 755 /tmp/screen_$ip
screen -S Redis_client -d -m /tmp/screen_$ip
client_num=$((client_num+1))

done
wait for all screen to finish
set +x
echo "'date’ waiting for all screen to finish" >> $SCRIPT_LOG
while : ; do
screen -1s | grep -q Redis_client
if [$? != 0]; then
break
fi
sleep 5
done
echo "'date” A1l screen sessions have finished" >> $SCRIPT_LOG
echo DONE >> $Tlogts
done
set -x
done
exit
Redis Performance Evaluation Guide May 2018

14

337669-001US

Intel® Memory Drive Technology

8. Putthe code below in “test.c”

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "hiredis.h"
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <omp.h>

// DEFAULTS:

#define DEF_HOST "127.0.0.1"
#define DEF_PORT 6789
#define DEF_SIZE 100
#define DEF_COUNT 200000000

// Histogram data

#define MAX_THREADS 256

#define MAX_HISTOGRAM 1000000

#define PAD (2*%4096/sizeof(int))

Tlong histogram[MAX_THREADS] [MAX_HISTOGRAM + PAD];

char *value;

int threads = 1;

char hostname[256];

int port = DEF_PORT;

int val_size = DEF_SIZE;
long key_count = DEF_COUNT;

void save_and_reset_hist(char *histname)
{

int m, i;

FILE *hist;

char nameBuff[64] = { 0 };

strncpy(nameBuff, histname, 63);
int filedes = mkstemp(nameBuff);

if (NULL !'= (hist = fdopen(filedes, "w"))) {
fprintfChist, "us");
for (m = 0; m < threads; m++)
fprintfchist, " %d", m);
fprintf(hist, " total\n");

int first = -1;
int Tast = 0;
for (i = 0; i <= MAX_HISTOGRAM; 1i++)
for (m = 0; m < threads; m++) {
if ((first == -1) && histogram[m][i]) first = 1i;
if (histogram[m][i]) last = 1i;
}

if (first == -1) first = last + 1;

long all = 0, all_acc = 0;
for (i = first; i <= last; i++)
for (m = 0; m < threads; m++)
all += histogram[m][i];

for (i = first; i <= last; i++) {
fprintfChist, "%d", i);
Tong total = 0;
for (m = 0; m < threads; m++) {
fprintf(hist, " %d", histogram[m][i1);
total += histogram[m][i];

all_acc += total;

fprintfChist, " %1d %.3f\n", total, (double) 100 * (double) all_acc / (double) all);

}

fclose(hist);
printf("Histogram saved to file %s\n", nameBuff);
} else
printf("unable to save histogram to file %s\n", nameBuff);

memset(histogram, 0, sizeof(histogram));

May 2018
337669-001US

Redis Performance Evaluation Guide
15

intel)@’

long timestamp(void)

Intel® Memory Drive Technology

{
static Tong start_time = -1;
struct timeval tv;
gettimeofday (&tv, NULL);
if (start_time == -1)
start_time = tv.tv_sec;
return ((Tong) (tv.tv_sec - start_time))*1000000L+tv.tv_usec;
}
char *datestr(void)
{
time_t now;
time (&now) ;
return strtok(ctime(&now),"\n");
}
int main(int argc, char *argv[])
{
// Arguments: HOST PORT SIZE COUNT
// Number of threads will be taken from OMP_NUM_THEADS
threads = omp_get_max_threads();
if (threads > MAX_THREADS) {
printf("Too many threads requested, maximum supported is %d\n", MAX_THREADS);
exit(1l);
}
strcpy(hostname, DEF_HOST);
if (argc > 1) strcpy(hostname, argv[1]);
if (argc > 2) port = atoi(argv[2]);
if (argc > 3) val_size = atoi(argv[3]);
if (argc > 4) key_count = atol(argv[4]);
printf("threads = %d start_port = %d value_len = %d key_count = %1d\n", threads, port, val_size,
key_count) ;

#pragma omp parallel

redisContext *con;

redisReply *reply;

struct timeval timeout = { 1, 500000 }; // 1.5 seconds
char 1ine[1024];

long i;

int tid = omp_get_thread_num();

char *value = (char*) malloc(val_size+1);

if (NULL == value) {
sprintf(line, "out Oof Memory in thread %d\n", tid);
printf(line); fflush(stdout);
exit(1l);

for (i = 0; 1 < val_size; i++)
valuel[i] = '0"' + ((tid+i) % 75);
value[val_size] = '\0';

for (i = 0; i <= MAX_HISTOGRAM; i++)
histogram[tid][i] = O;

#pragma omp barrier
if (tid == 0) {
sprintf(line, "%s : value(s) allocated, connecting\n", datestr());
printf(line); fflush(stdout);

}

con = redisConnectwithTimeout(hostname, port+tid, timeout);

if (NULL == con) {
sprintf(line, "Thread %3d: port %d connection error: can't allocate redis context\n", tid,

port+tid);
printf(line); fflush(stdout);
exit(l);
if (con->err != 0) {

sprintf(line,"Thread %3d: port %d connection error: %s\n", tid, port+tid, con->errstr);
printf(line); fflush(stdout);

redisFree(con);

exit(l);

sprintf(line, "Thread %3d: port %d connected\n", tid, port+tid);
printf(line); fflush(stdout);

Redis Performance Evaluation Guide May 2018
16 337669-001US

Intel® Memory Drive Technology

reply = redisCommand(con, "flushall");
sprintf(line, "Thread %3d: port %d flushall
printf(line); fflush(stdout);
freereplyobject(reply);
#pragma omp barrier
if (tid == 0) {
sprintf(line, "%s : %d threads started
printf(line); fflush(stdout);

// SET
long maxtime = 0, av_time
total_elapse;
start timestamp();
for (i 0; i < key_count; i++) {
singlestart timestamp();
reply = redisCommand(con, "SET %1d %s",
if (strcmp(reply->str, "oK"™) != 0) {
sprintf(line, "Thread %3d: port %d SET
"<VALUE>", reply->str);
printf(line); fflush(stdout);
}

0, max_av_time

elapsed = timestamp() - singlestart;

histogram[tid] [elapsed >= MAX_HISTOGRAM ? MAX_HISTOGRAM :

total
av_time

total + elapsed;
total / (i+l);

if (elapsed > maxtime || av_time > max_

maxtime) {
elapsed;

if (elapsed
maxtime

>

if (av_time > max_av_time) {
max_av_time av_time;

}

sprintf(line, "Thread %3d: port %d set
tid, port+tid, i, maxtime, max_av_time);

printf(line); fflush(stdout);

}
freeReplyobject(reply);

total_elapse = timestamp() - start;

1%s\n", tid, port+tid, reply->str);

- set\n", datestr(), threads);

= 0, total 0, singlestart, elapsed, start,

i, value);

%1d %s reply error! reply:%s\n", tid, port+tid, i,

elapsed]++;

av_time) {

key %8d - max time %61d usecs , max average %51d\n",

sprintf(line, "Thread %3d: port %d set %d keys - elapse %1d usecs , max time %1d , average %1d ,
max average %1d\n", tid, port+tid, key_count, total_elapse, maxtime, av_time, max_av_time);

printf(line); fflush(stdout);
#pragma omp barrier
if (tid == 0) {

sprintf(line, "%s :

printf(line); fflush(stdout);

%d threads finished - set\n", datestr(), threads);

save_and_reset_hist("histogram-set-XXXxXxx");

#pragma omp barrier
if (tid == 0) {
sprintf(line, "%s : %d threads started
printf(line); fflush(stdout);

}
/;’: Get ~,':/
start = timestamp();

maxtime = av_time = max_av_time = total

for (i = 0; i < key_count; i++) {
singlestart timestamp(Q);

reply = redisCommand(con, "GET %1d", i);

if (NULL == reply) {
sprintf(line, "Thread %3d: port %d GET
printf(line); fflush(stdout);

else if (strcmp(reply->str, value)

sprintf(line, "Thread %3d: port %d GET
reply->str);

printf(line); fflush(stdout);

elapsed = timestamp() - singlestart;

histogram[tid] [elapsed >= MAX_HISTOGRAM ? MAX_HISTOGRAM :

total
av_time

total + elapsed;
total / (G + 1);

if (elapsed > maxtime || av_time > max_.

if (elapsed
maxtime

>

maxtime) {
elapsed;

if (av_time > max_av_time) {
max_av_time av_time;

May 2018
337669-001US

- get\n", datestr(), threads);

0;

’

%1d reply is NULL!\n", tid, port+tid, i);

1= 0) {

%1d reply error! reply:%s\n", tid, port+tid, i,

elapsed]++;

av_time) {

Redis Performance Evaluation Guide
17

}

sprintf(line, "Thread %3d: port %d get key %81d - max time %61d usecs , max average %51d\n",
tid, port+tid, i, maxtime, max_av_time);

printf(line); fflush(stdout);

Intel® Memory Drive Technology

}
freerReplyobject(reply);
}
total_elapse = timestamp() - start;
sprintf(line, "Thread %3d: port %d get %1d keys - elapse %1d usecs , max time %1d , average %1d ,
max average %1d\n", tid, port+tid, key_count, total_elapse, maxtime, av_time, max_av_time);
printf(line); fflush(stdout);
#pragma omp barrier
if (tid == 0) {
sprintf(line, "%s : %d threads finished - get\n", datestr(), threads);
printf(line); fflush(stdout);
save_and_reset_hist("histogram-get-XXXxxx");

redisFree(con);
free(value);

}
printf("%s : Complete.\n", datestr());

9. Obtain the latest Redis software:
I #wget http://download.redis.io/releases/redis-4.0.2.tar.gz |

10. Open the tar file:
I #tar xzf redis-4.0.2.tar.gz I

11. Step into the extracted folder:
I #cd redis-4.0.2 I

12. Build the redis software:
I #make install I

13. Build the redis client:

cd /root/redis/redis-4.0.2/deps/hiredis

make install

gcc -g -02 -fopenmp -o test test.c -I/root/redis/redis-4.0.2/deps/hiredis -L/root/redis/redis-
4.0.2/hiredis -Thiredis

4.3 Client (load) System Installation and configuration

This procedure assumes that the system used has the latest CentOS (7.3 or 7.4) installed, and updated to latest
version by executing “yum -y update”.

1. Install a recent copy of Centos (CentOS 7.3 or 7.4) or upgrade your system

2. Login to the master system as “root”. And use passwordless connection to connect to each client (which is
not the master client). Replace CLIENT below with the client IP address

| # cd /root/redis |

3. Make sure client is updated:

| # ssh CLTENT “yum update -y” |

4. Create a folder named “redis”:

I # ssh client “mkdir /root/redis” I

5. Copy the test binary to the client macine:

I #scp test CLIENT:/root/redis I

Redis Performance Evaluation Guide May 2018
18 337669-001US

intel

Intel® Memory Drive Technology

4.4 System Connectivity Configuration

Make sure root can ssh from the master client machine (a) to itself and (b) to the other system without password
(using keys), as the client run script is using ssh to connect to the server system.

This procedure assumes that the system used has the latest CentOS (7.3 or 7.4) installed, and updated to latest
version by executing “yum -y update”. You must also have the make and gcc packages installed.

1. Install a recent copy of Centos (CentOS 7.3 or 7.4) or upgrade your system
2. Login to the master client machine as “root”

3. Make sure it is updated:

yum update -y

4. Generate a public/private RSA key pair.

ssh-keygen -A -r rsa

5. Copy your public RSA key to each of the machines in the setup (including the current machine). Repeat this
for the number of machines you have in your setup, replacing CLIENT with the IP address of the machine.
Please make sure to use >> below, and not >, as using > will overwrite any public keys that are stored.

cat /root/.ssh/id_rsa.pub | ssh root@CLIENT 'cat >> /root/.ssh/authorized_keys'

May 2018 Redis Performance Evaluation Guide
337669-001US 19

®

intel
Intel® Memory Drive Technology

5 Running the Benchmark

5.1 Initialization the Benchmark on the master client

Run the invocation script on the master client:
Please note that the script assumes ssh without password is set between the masterclient, other clients and server
systems.

#cd /root/redis
#./do_it.sh

5.2 Collecting Results
Run the invocation script on the master client:

In order to make it easier to collect the results, the following script is provided (CSV format):
1. Summary2csv.sh

#!/bin/bash
echo "\"filename\",\"clients\",\"Ten\",\"servers\",\"keys\",\"max_time\",\"operation\""
for fname in "T1s redis.log.* ;do
clients="grep key_count $fname|wc -1°
servers=grep key_count $fname|tail -1l|lawk '{print $3}'"
len="grep key_count $fname [tail -1 | awk '{print $9}'"
IFS=$'\n'
for Tine in "grep -B 1 "threads fin" $fname | grep "max average" " ;do
oper="echo $1line | awk '{print $5}'"
keys="echo $1ine | awk '{print $63}'"
max_time="echo $1ine | awk '{print $103}'"
max_time=$((max_time / 1000000))
echo "\"$fname\",\"$clients\",\"$1en\",\"$servers\",\"$keys\",\"$max_time\",\"$oper\""

done
done

Redis Performance Evaluation Guide May 2018
20 337669-001US

Intel® Memory Drive Technology

5.3 Results obtained in the lab

The results below show the following permutations:

ntel

Using “value” size of 1,000 B and 100,000 B, running SET and then GET 3 times, measuring the transactions. The
SETs are filling up the Redis store with 655 GB to use up substantially most memory of the node (768GB of

memory).

Table 1: Test Results

Intel® Memory

Vzil::_ # keys |Servers|Operation CNoar:\l;(ienZ)c(j Dr_ilye Techr_Iology I\(I){aotzlfe Ma();;l'si;n €
x Combined
1,000 2,275,590 288 SET 8,804,353,696 8,470,405,121 96.2% 594
1,000 2,275,590 288 GET 9,096,442,973 8,823,551,108 97.0% 585
1,000 2,275,590 288 SET 8,811,795,965 8,313,395,883 94.3% 593
1,000 2,275,590 288 GET 9,088,795,939 8,361,226,400 92.0% 586
1,000 2,275,590 288 SET 8,804,353,696 8,246,469,239 93.7% 594
1,000 2,275,590 288 GET 9,088,795,939 8,361,989,820 92.0% 586
100,000 22,743 288 SET 9,441,540,986 9,542,628,015 101.1% 553
100,000 22,743 288 GET 9,424,467,897 9,404,696,774 99.8% 557
100,000 22,743 288 SET 9,415,977,412 9,421,611,696 100.1% 556
100,000 22,743 288 GET 9,415,977,412 9,404,696,774 99.9% 556
100,000 22,743 288 SET 9,415,977,412 9,396,344,950 99.8% 556
100,000 22,743 288 GET 9,415,977,412 9,413,139,051 100.0% 556
8
May 2018 Redis Performance Evaluation Guide

337669-001US

21

Intel® Memory Drive Technology

6 Conclusions

We have shown that for users running Redis, in use-cases where the memory capacity per node is a limiting factor
and thereby typically requiring the addition of servers, Intel® Memory Drive Technology provides an excellent

alternative to adding nodes to the Redis cluster, enabling the same number of transactions per server while hosting
more than 4x the data per server.

Redis Performance Evaluation Guide

May 2018
22

337669-001US

