In-System Programmability Guidelines

2014.09.22

AN-100 09 subscribe C] Send Feedback

In-system programming (ISP) allows you to program ISP-capable Altera® devices through the IEEE Std.
1149.1 JTAG interface. This interface allows you to program devices and functionally test the PCB in a
single manufacturing step, saving testing time and assembly costs.

As time-to-market pressure increases, design engineers require advanced system-level products to ensure
problem-free development and manufacturing. Programmable logic devices (PLDs) with ISP can help
accelerate development time, facilitate in-field upgrades, simplify the manufacturing flow, lower
inventory costs, and improve PCB testing capabilities.

General ISP Guideline

The are several guidelines that will help you to design successfully for ISP-capable devices. You must use
these guidelines regardless of your specific design implementation.

The following lists the guidelines:

o Operating Conditions

 User Flash Memory Operations During In-System Programming

« Interrupting In-System Programming

« MultiVolt Devices and Power-Up Sequences

 I/O Pins Tri-Stated During In-System Programming

 Pull-Up and Pull-Down of JTAG Pins During In-System Programming

Operating Conditions

Each Altera device has several parametric ratings (operating conditions) required for proper operation.

When in user mode, Altera devices can exceed these conditions and still operate correctly; however,
Altera device must not exceed these conditions during in-system programming. Violating any of the
operating conditions during in-system programming can result in programming failures or incorrectly
programmed devices.

Table 1: Power-up Requirements for ISP Functions for Altera devices

Single supply MAX® 10 devices e Vee ong of the device

e Vcca of the device
e Vccio for all I/0 banks

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are

trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO

of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 900.1 12008
products and services at any time without notice. Altera assumes no responsibility o liability arising out of the application or use of any information, ~ Registered
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device

specifications before relying on any published information and before placing orders for products or services.
AIEIE%A
®

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=AN-100
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(AN-100%202014.09.22)%20In-System%20Programmability%20Guidelines&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

AN-100
2014.09.22

Dual supply MAX 10 devices

2 ISP Voltage

o Ve of the device
e Vi of the device
e Vccio for all I/O banks

All supported devices except MAX 10 e Veemr of the device

. VCCIO Of all 1I/0 banks

ISP Voltage
Altera devices have different ISP voltage requirements depending on the device family. You have to be
comply all requirements to ensure the device are programmed correctly.

MAX 10 Devices

For MAX 10 devices, you must maintain the Voo/Vee ong level, Voea level, and Vo level on the
Vee/Vee ong Veeas and Vo pins during in-system programming to ensure the flash cells of the
device are correctly programmed. The Vc/Vee ongs Veca and Vgpo specification applies for both
commercial- and industrial-temperature grade devices.

MAX Il and V Devices

For MAX I and MAX V devices, you must maintain the Vccnt level and Vo level on the Vet and
Vccio pins during in-system programming to ensure the flash cells of the device are correctly
programmed. The Vcyr and Vcpo specification applies for both commercial- and industrial-tempera-
ture grade devices.

MAX 3000, MAX 7000, and MAX 9000 Devices

MAX 3000, MAX 7000, and MAX 9000 devices have specified ISP voltage known as Vcisp. You must
maintain the Vcisp level on the Vo pins (for example, Voot equals to Vcrsp) during ISP to ensure
that the EEPROM cells of the device are programmed correctly. The Vcsp specification applies for both
commercial- and industrial- temperature- grade devices.

You have to adjust your in-system programming setup to maintain correct voltage levels if power
consumption during ISP exceeds the power consumption when in user mode. Altera recommends that
you test the Vcisp levels on the device’s Vot pins with an oscilloscope. First, test the Vcisp levels
with the oscilloscope’s trigger level set to the recommended minimum V¢ level. Measure the voltage
between Vcnr and ground, probed at the pins of the device. Then, repeat this test with the oscilloscope’s
trigger level set to the recommended maximum V¢ level. If the oscilloscope is triggered at either voltage
level, you must adjust your programming setup.

The recommended voltage levels are specified in the Recommended Operating Conditions section of the
appropriate Device Family Datasheet. Refer to the related information.

Related Information

« MAX 10 Device Datasheet

Provides more information about the recommended operating conditions for MAX 10 Devices.
o MAX YV Device Datasheet

Provides more information about the recommended operating conditions for MAX V Devices.
« MAXII Device Datasheet

Provides more information about the recommended operating conditions for MAX II Devices.

Altera Corporation In-System Programmability Guidelines

C] Send Feedback

http://www.altera.com/literature/hb/max-10/m10_datasheet.pdf
http://www/literature/hb/max-v/mv51003.pdf
http://www/literature/hb/max2/max2_mii51005.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100
2014.09.22 Input Voltages 3
+ MAX 3000A Device Datasheet
Provides more information about the recommended operating conditions for MAX 3000A Devices.
« MAX 7000 Device Datasheet
Provides more information about the recommended operating conditions for MAX 7000 Devices.
« MAX 7000A Device Datasheet
Provides more information about the recommended operating conditions for MAX 7000A Devices.
« MAX 7000B Device Datasheet
Provides more information about the recommended operating conditions for MAX 7000B Devices.
« MAX 9000 Device Datasheet
Provides more information about the recommended operating conditions for MAX 9000 Devices.

Input Voltages
Every Altera device family has a range for safe device operation. You need to ensure that all pins that
transition during in-system programming do not have a ground or V¢ overshoot. Overshoot problems
typically occur on free-running clocks or data buses that can toggle during in-system programming. Pins
that have an overshoot greater than 1.0 V must have series termination.

Each Device Family Datasheet lists the device input voltage specification in the “Absolute Maximum
Ratings” and the “Recommended Operating Conditions” tables. The input voltages in the “Absolute
Maximum Rating” table refers to the maximum voltage that the device can tolerate before risking
permanent damage.

Related Information

« MAX 10 Device Datasheet

Provides more information about the recommended operating conditions for MAX 10 Devices.
« MAXYV Device Datasheet

Provides more information about the recommended operating conditions for MAX V Devices.
« MAXII Device Datasheet

Provides more information about the recommended operating conditions for MAX II Devices.
« MAX 3000A Device Datasheet

Provides more information about the recommended operating conditions for MAX 3000A Devices.
« MAX 7000 Device Datasheet

Provides more information about the recommended operating conditions for MAX 7000 Devices.
+ MAX 7000A Device Datasheet

Provides more information about the recommended operating conditions for MAX 7000A Devices.
« MAX 7000B Device Datasheet

Provides more information about the recommended operating conditions for MAX 7000B Devices.
« MAX 9000 Device Datasheet

Provides more information about the recommended operating conditions for MAX 9000 Devices.

User Flash Memory Operations During In-System Programming

If your design allows you to erase or write the MAX II, MAX V or MAX 10 device’s user flash memory
(UFM), you must ensure that all the erase or write operations of the UFM are completed before starting
any ISP session (including stand-alone verify, examine, setting security bit, and reading the contents of
the UFM). If the UFM is performing any erase or write operation, you must not start an ISP session as this
may put the device in an unrecoverable state. However, this restriction does not apply to the read
operation of the UFM.

In-System Programmability Guidelines Altera Corporation

C] Send Feedback

http://www/literature/ds/m3000a.pdf
http://www/literature/ds/m7000.pdf
http://www/literature/ds/m7000a.pdf
http://www/literature/ds/m7000b.pdf
http://www/literature/ds/archives/m9000.pdf
http://www.altera.com/literature/hb/max-10/m10_datasheet.pdf
http://www/literature/hb/max-v/mv51003.pdf
http://www/literature/hb/max2/max2_mii51005.pdf
http://www/literature/ds/m3000a.pdf
http://www/literature/ds/m7000.pdf
http://www/literature/ds/m7000a.pdf
http://www/literature/ds/m7000b.pdf
http://www/literature/ds/archives/m9000.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100
4 Interrupting In-System Programming 2014.09.22
If you cannot ensure that any erase or write operation of the UFM is complete before attempting an ISP
operation to the MAX II, MAX V or MAX 10 device, you must enable the real-time ISP feature. If used
properly, this feature can help guard against any UFM or ISP operation contention. If you enable real-
time ISP feature, the programming algorithm from the Quartus® II software, or Jam™ Standard Test and
Programming Language (STAPL) Format (.jam) file/Jam Byte-Code (.jbc) file waits for 500 ms before it
begins any operation, the same amount of time it takes to erase one UFM sector (that is, the real-time ISP
programming algorithm waits for a previously started UFM erase operation to complete).

However, if you are using a real-time ISP feature, no other UFM operations are allowed after that time (no
address shifting, no data shifting, and no read, write, or erase operations). You can control the UFM
operations by monitoring the RTP_BUSY signal on the ALTUFM_NONE megafunction. If you are
performing a real-time ISP operation, the RTP_BUSY output signal on the UFM block goes high. You can
monitor the RTP_BUSY signal and ensure that all UFM operations from the logic array cease until real-time
ISP is complete. This user-generated control logic is only necessary for the ALTUFM_NONE megafunc-
tion, which provides no auto-generated logic. The other parameter editors for the ALTUFM megafunc-
tion (ALTUFM_PARALLEL, ALTUFM_SPI, and ALTUFM_I2C) contain control logic that automatically
monitors the RTP_BUSY signal and ceases UFM operations if you are performing the real-time ISP
operation.

Related Information

AN 630: Real-Time ISP and ISP Clamp for Altera Devices
Provides more information about the Real-time ISP and ISP Clamp for MAX II, MAX V and MAX 10
Devices.

Interrupting In-System Programming

Altera does not recommend interrupting the programming process because partially programmed devices
operate unpredictably. Partially programmed devices also cause signal conflicts, which can lead to
permanent device damage and can affect the proper operation of other devices on the board.

MAXII, MAX V and MAX 10 devices have an 1SP_DONE bit that you can only set at the end of a
successful program sequence. The I/O pins can only drive out if this bit is set. This prevents a partially
programmed device from driving out and operating unpredictably.

MultiVolt Devices and Power-Up Sequences

For the JTAG circuitry to operate correctly during in-system programming or boundary-scan testing, all
devices in a JTAG chain must be in the same state. If you do not hold the JTAG pins in the test-logic-reset
state, in-system programming errors can occur.

Therefore, in systems with multiple power supply voltages, you must hold the JTAG pins in the test-logic-
reset state until all devices in the chain are fully powered up. This procedure is important because systems
that have multiple power supplies cannot power all voltage levels simultaneously.

MAX devices have the MultiVolt™ feature and can use more than one power supply voltage:

« MAX 10 devices—Vc/Vc ong provides power to core and periphery, Vo provides power to input
pins and output buffer, and V¢ provides power to PLL regulator.

o Other MAX devices—V ccint and Vo for each I/0 bank. Vot provides power to the JTAG
circuitry; Vcpo provides power to input pins and output drivers for output pins, including TDO pin.

Altera Corporation In-System Programmability Guidelines

C] Send Feedback

http://www.altera.com/literature/an/an630.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100
2014.09.22 1/0 Pins Tri-Stated During In-System Programming 5

Vcant Powered before Vecio

If Veernr is powered up before Vcpo, the JTAG circuitry is active but unable to drive out signals. Thus,
any transition on the TCK pin can cause the state machine to transition to an unknown JTAG state. If TMS
and TCK pins are connected to Vo and Vo is not powered up, the JTAG signals are left floating.
These floating values can cause the device to transition to unintended JTAG states, leading to incorrect
operation when V¢cjo is finally powered up. Therefore, you must disable all JTAG signals.

Vceo Powered before Veant

If Vo is powered up before Vopn, the JTAG circuitry is not active but the TDO pin is tri-stated.
Although the JTAG circuitry is not active and if the next device in the JTAG chain is powered up with the
same trace as Vcpo, its JTAG circuitry must stay in the test-logic-reset state. Because all TMS and TCK
signals are common, you must disable these signals for all devices in the chain. Therefore, you must
disable the JTAG pins by pulling the TCK signal low and the TMS signal high. With the MAX 10 device hot-
socketing feature, you no longer need to ensure a proper power up sequence for each device on the board.

Related Information
Disabling IEEE Std. 1149.1 Circuitry on page 7

I/0 Pins Tri-Stated During In-System Programming

By default, all device I/O pins are tri-stated during in-system programming. In addition, MAX devices
provide a weak pull-up resistor during ISP. The purpose of this weak pull-up resistor is to eliminate the
requirement for external pull-up resistors on tri-stated I/O pins.

You must add sufficient pull-up or pull-down resistors on signals that require a particular value during
in-system programming (for example, JTAG configuration signals). If a pull-up or pull-down resistor is
not added, the device could have high current during in-system programming (caused by conflicts on the
board), in-system programming failures with either unrecognized device or verify errors, or a power up
after in-system programming fails.

For MAX II, MAX V and MAX 10 devices, you can use the in-system programming clamp feature or the
real-time ISP feature to ensure that each I/O pin is clamped to a specific state during in-system program-
ming.

Related Information

AN 630: Real-Time ISP and ISP Clamp for Altera Devices

Provides more information about the Real-time ISP and ISP Clamp for MAX II, MAX V and MAX 10
Devices.

Pull-Up and Pull-Down of JTAG Pins During In-System Programming

An Altera device operating in in-system programming mode require four pins: TDI, TDO, TMS, and TCK.
Three of the four JTAG pins have internal weak pull-up or pull-down resistors.

The TDI and TMS pins have internal weak pull-up resistors, while the TCK pin has an internal weak pull-
down resistor. However, for device programming in a JTAG chain, there might be devices that do not
have internal pull-up or pull-down resistors. Altera recommends to pull the TMS signal high externally
through 10-kQ and the TCK signal low through 1-kQ resistors. Pulling up the TDI signal externally for the
device is optional.

In-System Programmability Guidelines Altera Corporation

C] Send Feedback

http://www.altera.com/literature/an/an630.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100
2014.09.22

Figure 1: External Pull-Up and Pull-Down Resistors for TMS and TCK of a JTAG Chain in Altera Devices

6 IEEE Std. 1149.1 Signals

Figure shows the external pull-up and pull-down for the TMS and TCK pins of the JTAG chain in Altera
devices. The TDO pin does not have internal pull-up or pull-down resistors, and does not require external
pull-up or pull-down resistors.

10-Pin Male Header

(Top View)
Ve vec Other ISP-Capable Other ISP-Capable
B r=——— %mn Altera Device Device Device
——>% %’- DI TDO |— e —|TDI D0 —»|TDI TDO see -
o g
O Ofe ™S TCK ™S TCK ™S TCK

1kQ %

The TMS signal is pulled high so that the test access port (TAP) controller remains in the TEST_LOGIC or
RESET state even if there is input from TCK signal. During power up, you must pull the TCK signal low to
prevent the TCK signal from pulsing high. Pulling the TCK signal high is not recommended because the
increase in power supply to the pull-up resistor causes the TCK signal to pulse high; therefore, it is possible
for the TAP controller to reach an unintended state.

Related Information

o MAX 10 JTAG Boundary-Scan Testing User Guide
Provides more information about IEEE 1149.1 circuitry and JTAG pins function for MAX 10 Devices.

+ JTAG Boundary-Scan Testing in MAX V Devices
Provides more information about IEEE 1149.1 circuitry and JTAG pins function for MAX V Devices.

« IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices
Provides more information about IEEE 1149.1 circuitry and JTAG pins function for MAX II Devices.
o IEEE 1149.1 JTAG Boundary-Scan Testing in Altera Devices
Provides more information about IEEE 1149.1 circuitry and JTAG pins function for MAX 3000, MAX
7000 and MAX 9000 Devices.

IEEE Std. 1149.1 Signals

This section provides guidelines for programming with the IEEE Std. 1149.1 JTAG interface.

TCK Signal

A noisy TCK signal causes most in-system programming failures. Noisy transitions on rising or falling
edges can cause incorrect clocking of the IEEE Std. 1149.1 TAP controller. Incorrect clocking can cause
the state machine to transition to an unknown state, leading to in-system programming failures.

Because the TCK signal must drive all IEEE Std. 1149.1 devices in the chain in parallel, the signal may have
a high fan-out. Like any other high fan-out user-mode clock, you must manage a clock tree to maintain

Altera Corporation In-System Programmability Guidelines

C] Send Feedback

http://www.altera.com/literature/hb/max-10/ug_m10_jtag.pdf
http://www/literature/hb/max-v/mv51008.pdf
http://www/literature/hb/max2/max2_mii51014.pdf
http://www/literature/an/an039.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100
2014.09.22

Programming Through a Download Cable 7

signal integrity. Typical errors that result from clock integrity problems are invalid ID messages, blank-
check errors, or verification errors.

Altera recommends pulling the TCK signal low through the internal weak pull-down resistor or an external
1-kQ resistor.

Fast TCK edges combined with board inductance can cause overshoot problems. When this combination
occurs, you must either reduce inductance on the trace or reduce the switching rate by selecting a
transistor-to-transistor logic (TTL) driver chip with a slower slew rate. You must not use resistor and
capacitor networks to slow down edge rates, because resistor and capacitor networks can violate the input
specifications of the device. Use a driver chip to prevent the edge rate from being too slow. Altera
recommends using driver chips that do not glitch after power up.

Programming Through a Download Cable

You can program Altera devices with a MasterBlaster™, ByteBlasterMV ", ByteBlaster " 11, ByteBlaster,

BitBlaster ™, EthernetBlaster, or USB Blaster download cable. Using a PC or UNIX workstation with the
Quartus II Programmer, you can download Programmer Object File (.pof), .jam, or .jbc files to the Altera
devices through the download cable.

If you use the download cables and your JTAG chain contains three or more devices, Altera recommends
adding a buffer to the chain. You must select a buffer with slow transitions to minimize noise, but ensure
that the transition rates can still meet TCK performance requirements of your chain.

If you must extend the download cable, you can attach a standard PC parallel or USB port cable to the
download cable. Do not extend the 10-pin header portion of the download cable; extending this portion of
the cable can cause noise and in-system programming problems.

Note: Different download cables have different programming times. Refer related information.

Related Information

o MasterBlaster Serial/USB Communications Cable User Guide
+ ByteBlasterMV Download Cable User Guide

+ ByteBlaster II Download Cable User Guide

« BitBlaster Serial Download Cable User Guide

o USB-Blaster Download Cable User Guide

o EthernetBlaster II Communications Cable User Guide

Disabling IEEE Std. 1149.1 Circuitry

If your design does not use ISP or boundary-scan test (BST) circuitry, Altera recommends disabling the
IEEE Std. 1149.1 circuitry

Table 2: Disabling IEEE Std.1149.1 Circuitry in MAX Devices

Device Permanently Disabled Enabled for ISP and BST, Disabled
During User Mode

Max 10 « Pull the TMS and TDI signal high

o Pull the TCK signal low

In-System Programmability Guidelines Altera Corporation

C] Send Feedback

http://www.altera.com/literature/ug/ug_mstr_blstr.pdf
http://www.altera.com/literature/ug/ug_bbmv.pdf
http://www.altera.com/literature/ug/ug_bbii.pdf
http://www.altera.com/literature/ds/dsbit.pdf
http://www.altera.com/literature/ug/ug_usb_blstr.pdf
http://www.altera.com/literature/ug/ethernetblasterII.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8 Disabling IEEE Std. 1149.1 Circuitry

AN-100
2014.09.22

Permanently Disabled Enabled for ISP and BST, Disabled
During User Mode

MAXTI Either:

MAXV « Pull the TVS signal high and the TCK signal low

MAX 9000 or

MAX 9000A o Pull the TVS signal high before pulling the TCK signal high

MAX 7000S Either:

MAX 7000B o Pull the TVS signal high and the
MAX 7000AE software. or

MAX 3000A o Pull the TVS signal high before

pulling the TCK signal high

JTAG Permanently Disabled (MAX 7000S, MAX 7000B, MAX 7000A, MAX 7000AE and MAX 3000A

Devices)

You can use MAX 7000S, MAX 7000B, MAX 7000A, MAX 7000AE, and MAX 3000A device JTAG pins
as either JTAG ports or I/O pins. You must specify how the pins will be used before compiling your
design in the Quartus II software by turning the Enable JTAG BST Support option on or off. When you
turn on this option, the pins act as JTAG ports for in-system programming and boundary-scan testing;
when you turn off this option, the pins act as I/O pins and you cannot perform in-system programming
or boundary-scan testing.

JTAG Permanently Disabled (MAX 10, MAX V, MAX Il, MAX 9000 and MAX 9000A Devices)

By default, the JTAG circuitry is always enabled in MAX 10, MAX V, MAX II, MAX 9000, and MAX
9000A devices after power-up. You must enable the JTAG circuitry during ISP and boundary-scan
testing, but must be disabled at all times. Therefore, if you do not plan to use the ISP and BST circuitry,
you can disable the circuitry through the JTAG pins. To disable JTAG, the JTAG specification instructs
you to pull the TMS signal high but does not explain what to do with the TCK signal. Altera recommends
pulling the TMS signal high and the TCK signal low. Pulling the TCK signal low ensures that a rising edge

does not occur on the TCK signal during the power-up sequence.

You can pull the TCK signal high, but only after you pull the TMS signal high. Pulling the TVS signal high
first ensures that the rising edges on the TCK signal do not cause the JTAG state machine to leave the test-

logic-reset state.

JTAG Enabled for ISP or BST and Disabled in User Mode

For Altera ISP-capable devices that use JTAG for either in-system programming or boundary-scan
testing, you must enable the JTAG circuitry during ISP and BST but must be disabled at all other times.

You control JTAG operation through the JTAG pins. To disable the JTAG circuitry on MAX 10, MAX V,
MAXII, MAX 9000, and MAX 9000A devices permanently, either pull the TMS signal high and the TCK
signal low, or pull the TMS signal high before pulling the TCK signal high.

Related Information

« MultiVolt Devices and Power-Up Sequences on page 4

Altera Corporation In-System Programmability Guidelines

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100
2014.09.22

Working with Different Voltage Levels 9

o MAX 10 JTAG Boundary-Scan Testing User Guide

Provides more information about IEEE 1149.1 circuitry and JTAG pins function for MAX 10 Devices.
+ JTAG Boundary-Scan Testing in MAX V Devices

Provides more information about IEEE 1149.1 circuitry and JTAG pins function for MAX V Devices.
o IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices

Provides more information about IEEE 1149.1 circuitry and JTAG pins function for MAX II Devices.
o IEEE 1149.1 JTAG Boundary-Scan Testing in Altera Devices

Provides more information about IEEE 1149.1 circuitry and JTAG pins function for MAX 3000, MAX

7000 and MAX 9000 Devices.

Working with Different Voltage Levels

When devices in a JTAG chain operate at different voltage levels, an output voltage specification of a
device must meet the input voltage specification of the subsequent device.

If the devices do not meet this criteria, you must add additional circuitry, such as a level-shifter, to adjust
the voltage levels. For example, when a 5.0-V device drives a 2.5-V device, you must adjust the 5.0-V
output voltage of the device to meet the 2.5-V input voltage specification of the subsequent device.

Because all devices in a JTAG chain are tied together, you must also ensure that the TDO output of the first
device meets the TDI input voltage specification of the subsequent device to program a chain of devices
successfully

All Altera ISP-capable devices include a MultiVolt I/O feature, which allows these devices to interface
with systems that have different supply voltages. You can set all MultiVolt devices for 3.3-V, 2.5-V, 1.8-V,
or 1.5-V I/O operation. The JTAG pins of MultiVolt devices support these voltage levels.

Related Information

« MAX 10 Device Datasheet
Provides more information about the I/O standard compatibility for each voltages for MAX 10
Devices.
« MAXYV Architecture
Provides more information about the I/O standard compatibility for each voltages for MAX V Devices.
o MAXII Architecture
Provides more information about the I/O standard compatibility for each voltages for MAX II Devices.
o MAX 3000A Device Datasheet
Provides more information about the I/O standard compatibility for each voltages for MAX 3000A
Devices.
« MAX 7000 Device Datasheet
Provides more information about the I/O standard compatibility for each voltages for MAX 7000
Devices.
« MAX 7000A Device Datasheet
Provides more information about the I/O standard compatibility for each voltages for MAX 7000A
Devices.
« MAX 7000B Device Datasheet
Provides more information about the I/O standard compatibility for each voltages for MAX 7000B
Devices.

In-System Programmability Guidelines Altera Corporation

C] Send Feedback

http://www.altera.com/literature/hb/max-10/ug_m10_jtag.pdf
http://www/literature/hb/max-v/mv51008.pdf
http://www/literature/hb/max2/max2_mii51014.pdf
http://www/literature/an/an039.pdf
http://www.altera.com/literature/hb/max-10/m10_datasheet.pdf
http://www/literature/hb/max-v/mv51002.pdf
http://www/literature/hb/max2/max2_mii51002.pdf
http://www/literature/ds/m3000a.pdf
http://www/literature/ds/m7000.pdf
http://www/literature/ds/m7000a.pdf
http://www/literature/ds/m7000b.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100
10 Sequential versus Concurrent Programming 2014.09.22
e MAX9000 Device Datasheet
Provides more information about the I/O standard compatibility for each voltages for MAX 9000
Devices.

Sequential versus Concurrent Programming

This section describes how to program multiple devices with sequential and concurrent programming.
The JTAG chain setup for sequential and concurrent programming is similar and only the programming
algorithms are different.

Sequential Programming

Sequential programming is the process of programming multiple devices in a chain, one device at a time.
After the process of programming the first device in the chain is complete, the next device is programmed.
This sequence continues until all specified devices in the JTAG chain are programmed. After a device is
successfully programmed, the device is in bypass mode that allows passing of data to the subsequent
devices in the chain. The devices in the chain do not go into user mode until all the devices are
programmed.

Concurrent Programming

Use concurrent programming to program devices from the same device family in parallel. The program-
ming time is longer than the time required to program the largest device in the chain, resulting in
considerably faster programming times than sequential programming (where programming time is equal
to the sum of individual programming times for all devices). Higher clock rates for shifting data result in
even greater time savings.

To perform concurrent programming of devices with Serial Vector Format File (.svf), .jam files, or .jbc files
created from the Quartus II software, follow these steps:

1. On the Tools menu, click Programmer.

Click Add File and select programming files for the respective devices.

On the File menu, point to Create/Update and click Create JAM, SVF, or ISC File.

Specify a file in the File format list.

Click OK.

AL

Selecting Sequential or Concurrent Programming

When programming using a Programmer Object File (.pof) and a MasterBlaster, ByteBlasterMV,
ByteBlaster, or BitBlaster download cable, sequential programming is selected automatically. When using
a .jam file or Serial Vector Format (.svf) File, devices are programmed or configured in the following
order:

FLEX 10K devices sequentially

APEX™ 20K devices sequentially

MAX 7000S and MAX 7000A devices concurrently
MAX 7000AE and MAX 3000A devices concurrently
EPC2 devices sequentially

MAX 9000 devices concurrently

SIS e

Altera Corporation In-System Programmability Guidelines

C] Send Feedback

http://www/literature/ds/archives/m9000.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100 L
2014.09.22 Devices in Different Modes 11

You can perform sequential programming with a .jam or .svf if you create individual files for each device.
In this scheme, FLEX and APEX devices do not begin configuration until you click the Configure button
in the MAX+PLUS II Programmer.

Devices in Different Modes

Errors can occur if some devices in the chain are operational while others are still being programmed. For
this reason, MAX 7000S, MAX 7000A, MAX 7000AE, MAX 7000B, and MAX 3000A devices use a
specific ISP instruction that prevents the devices from entering normal operation until all devices in the
chain finish in-system programming. In this mode, these devices pass all boundary-scan data synchro-
nously and wait for all other devices in the same family to complete programming before beginning
operation. Thus, all of these devices begin operation simultaneously. APEX 20K, FLEX 10K, MAX 9000,
and MAX 9000A devices do not currently support this mode. These devices are held in tri-state mode by
the programming software until all device families have been programmed or configured.

ISP Troubleshooting Guidelines

This section provides tips for troubleshooting ISP-related problems.

Invalid ID and Unrecognized Device Messages

The first step after the device enters ISP mode is to check the silicon ID or the JTAD ID of the device. If
the silicon ID or the JTAD ID does not match, an Invalid 1D or Unrecognized Device error is
generated.

The following section describes the typical causes for this error:

« Download Cable Connected Incorrectly
« TDO Is Not Connected

o Incomplete JTAG Chain

« Noisy TCK Signal

+ Jam Player Ported Incorrectly

Download Cable Connected Incorrectly
An error is generated if the download cable is connected incorrectly to the parallel or USB port, or if the
download cable is not receiving power from your board.

TDO Is Not Connected

An error is generated if the TDO port of one device in the chain is not connected. During in-system
programming, data must be shifted in and out of each device in the JTAG chain through the JTAG pins.
Therefore, you must connect the TDO port of each device to the TDI port of subsequent device, and you
must connect the TDO port of the last device to the TDO port of the download cable.

Incomplete JTAG Chain

An error is generated if the JTAG chain is not complete. To check if an incomplete JTAG chain is causing
the error, use an oscilloscope to monitor vectors coming out of each device in the chain. If TDO port of
each device does not toggle during in-system programming, your JTAG chain is not complete.

In-System Programmability Guidelines Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100

12 Verify the JTAG Chain Continuity 2014.09.22

Noisy TCK Signal

Noise on the TCK signal is the most common reason for in-system programming errors. Noisy transitions
on rising or falling edges can cause incorrect clocking of the IEEE Std. 1149.1 TAP controller, causing the
state machine to be lost and in-system programming to fail.

Jam Player Ported Incorrectly

An error is generated if the Jam Player is not ported correctly for your platform. To check if the Jam
Player is causing the error, apply the 1DCODE instruction to the target device with a .jam file. You can use
the .jam file to load an 1DCODE instruction and then shift out the 1DCODE value. This test determines if the
JTAG chain is set up correctly and if you can read and write to the JTAG chain properly.

Related Information

o TCK Signal on page 6
Provides more information about noisy TCK signal.
« IDCODE Reader Jam File

Verify the JTAG Chain Continuity

For in-system programming to occur successfully, the number of devices in the JTAG chain must match
the number reported in the Quartus II software or the MAX+Plus II software.

To verify in the Quartus II software that the JTAG chain is connected properly, follow these steps:

1. Open the Programmer in the Quartus II software.

2. Click Auto Detect in the Programmer. The Quartus II software reports the number of devices found
on the JTAG chain. If this fails, check the JTAG chain to make sure it is not broken.

To verify in the MAX+Plus II software that the JTAG chain is connected properly, follow these steps:

1. In the MAX+Plus II Programmer, choose Multi-Device JTAG Chain Setup.

2. In the Multi-Device JTAG Chain Setup dialog box, click the Detect JTAG Chain Info button. The
MAX+Plus II software reports the amount of devices found on the JTAG chain.

Check the Voltage Levels of the Board During In-System Programming

Monitor the Vet or Veca, Vec one/Vee and Vo signal for all banks on your JTAG chain with an
oscilloscope.

Set the trigger to the minimum level listed in the “Recommended Operating Conditions” table of the
appropriate Device Family Datasheet. If a trigger occurs during in-system programming, the devices may
need more current than is being supplied by the existing power supply. You can replace the existing
power supply with one that provides more current.

Related Information

o MAX 10 Device Datasheet

Provides more information about the recommended operating conditions for MAX 10 Devices.
« MAXYV Device Datasheet

Provides more information about the recommended operating conditions for MAX V Devices.
« MAXII Device Datasheet

Provides more information about the recommended operating conditions for MAX II Devices.

Altera Corporation In-System Programmability Guidelines

C] Send Feedback

https://www.altera.com/download/legacy/jam/dnl-idcode_reader.jsp
http://www.altera.com/literature/hb/max-10/m10_datasheet.pdf
http://www/literature/hb/max-v/mv51003.pdf
http://www/literature/hb/max2/max2_mii51005.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100 . .
2014.09.22 Random Signals on JTAG Pins 13

+ MAX 3000A Device Datasheet

Provides more information about the recommended operating conditions for MAX 3000A Devices.
+ MAX 7000 Device Datasheet

Provides more information about the recommended operating conditions for MAX 7000 Devices.
« MAX 7000A Device Datasheet

Provides more information about the recommended operating conditions for MAX 7000A Devices.
« MAX 7000B Device Datasheet

Provides more information about the recommended operating conditions for MAX 7000B Devices.
« MAX 9000 Device Datasheet

Provides more information about the recommended operating conditions for MAX 9000 Devices.

Random Signals on JTAG Pins
During normal operation, TAP controller of each device must be in the test-logic-reset state.

To force the device back into this state, try pulling the TMS signal high and pulsing the TCK signal six times.
If the device successfully powers up, you must add a higher pull-down resistor on the TCK signal.

Software Issues

Failures during in-system programming may occasionally be related to the Quartus II software or the
MAX+Plus II software.

Software-related issues are documented in the Knowledge Center section under the Support Center on the
Altera website. Search the database for information relating to software issues that interfere with in-
system programming.

Related Information

Knowledge Center

ISP through Embedded Processors

This section provides guidelines for programming ISP-capable devices with the Jam STAPL and an
embedded processor.

Processor and Memory Requirements

The Jam Byte-Code Player supports 8 bit and higher processors; the ASCII Jam Player supports 16 bit and
higher processors. The Jam Player uses memory in a predictable manner, which simplifies in-field
upgrades by confining updates to the .jam file. The Jam Player memory uses both ROM and dynamic
memory (RAM). ROM is used to store the Jam Player binary and the .jam file; dynamic memory is used
when the Jam Player is called.

Related Information

AN 425: Using the Command-Line Jam STAPL Solution for Device Programming
Provides more information about how to estimate the maximum amount of RAM and ROM required by
the Jam Player.

In-System Programmability Guidelines Altera Corporation

C] Send Feedback

http://www/literature/ds/m3000a.pdf
http://www/literature/ds/m7000.pdf
http://www/literature/ds/m7000a.pdf
http://www/literature/ds/m7000b.pdf
http://www/literature/ds/archives/m9000.pdf
http://www.altera.com/support/kdb/kdb-index.jsp
http://www.altera.com/literature/an/an425.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. AN-100
14 Porting the Jam Player 2014.09.22

Porting the Jam Player

The Altera Jam Player (both Byte-Code and ASCII versions) works with a PC parallel port. To port the
Jam Player to your processor, you only need to modify the jamstub.c or jbistub.c file (for the ASCII Jam
Player or Jam Byte-Code Player, respectively).

All other files must remain the same. If the Jam Player is ported incorrectly, an Unrecognized
Device error is generated. The most common causes for this error are:

 After porting the Jam Player, the TDO value may be read in reversed polarity. This problem may occur
because the default I/O code in the Jam Player assumes the use of the PC parallel port.

o Although the TMS and TDI signals are clocked in on the rising edge of TCK signal, outputs do not
change until the falling edge of TCK signal. This situation causes a half TCK clock cycle to lag in reading
out the values. If the TDO transition is expected on the rising edge, the data appears to be offset by one
clock.

o Altera recommends using registers to synchronize the output transitions. In addition, some processor
data ports use a register to synchronize the output signals. For example, reading and writing to the
parallel port of the PC is accomplished by reading and writing to registers. When reading and writing
to the JTAG chain, you must take into consideration the use of these registers. Incorrect accounting of
these registers can cause the values to either lead or lag the expected value.

You can use a test .jam file to determine if the Jam Player is ported correctly. The following examples
show parts of a sample .jam file that helps debug potential porting problems.

Example 1: Sample 1

NOTE JAM_VERSION "1.1 *;

NOTE DESIGN "IDCODE.jam version 1.4 4/28/98";
R
#

"#This Jam File compares the IDCODE read from a JTAG chain with the
"#expected IDCODE. There are 5 parameters that can be set when executing
"#this code.

" H#

"#COMP_IDCODE_[device #]=1, for example -dCOMP_IDCODE_9400=1

"#compares the IDCODE with an EPM9400 IDCODE.

"#PRE_IR=[IR_LENGTH] is the length of the instruction registers you want
"#to bypass after the target device. The default is 0, so if your

"#JTAG length is 1, you don"t need to enter a value.
"#POST_IR=[IR_LENGTH] is the length of the instruction registers you
"#want to bypass before the target device. The default is 0, so if
"#your JTAG length is 1, you don"t need to enter a value.
"#PRE_DR=[DR_LENGTH] is the length of the data registers you want

"#to bypass after the target device. The default is 0, so if your

"#JTAG length is 1, you don"t need to enter a value.
"#POST_DR=[DR_LENGTH] is the length of the data registers you want

"#to bypass before the target device. The default is 0, so if your
"#JTAG length is 1, you don"t need to enter a value.

"#Example: This example reads the IDCODE out of the second device in the
“#chain below:

“#

"#TDl -> EPM7128S -> EPM7064S -> EPM7256S -> EPM7256S -> TDO

" H#

"#In this example, the IDCODE is compared to the EPM7064S IDCODE. If the JTAG
"#chain is set up properly, the IDCODEs should match.

"# C:\> jam -dCOMP_IDCODE_7064S=1 -dPRE_IR=20 -dPOST_IR=10 -dPRE_DR=2
"#-dPOST_DR=1 -p378 IDCODE. jam

" H#

“#

Altera Corporation In-System Programmability Guidelines

[;:J Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100
2014.09.22

Porting the Jam Player 15

"# Example: This example reads the IDCODE of a single device JTAG chain
"# and compares it to an EPM9480 IDCODE:

" H#

*# C:\> jam -dCOMP_IDCODE_9480=1 -p378 IDCODE.jam
e

#

Example 2: Sample 2

" HHHHH R Initial i zati on #HHHHTHHHH I
read_data[32];

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
INTEGER
INTEGER
INTEGER
INTEGER
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

1_IDCODE[10]
I_ONES[10] =

= BIN 1001101000;
BIN 1111111111,

ONES_DATA[32]= HEX FFFFFFFF;

ID_9320[32]
1D_9400[32]
1D_9480[32]
I1D_9560[32]
ID_7032S[32]
ID_7064S[32]
ID_7128S[32]
ID_7128A[32]
ID_7160S[32]
ID_7192S[32]
ID_7256S[32]
ID_7256A[32] =

COMP_9320_ I1DCODE
COMP_9400_IDCODE
COMP_9480_IDCODE
COMP_9560_IDCODE
COMP_7032S_IDCODE
COMP_7064S_1DCODE
COMP_7096S_1DCODE
COMP_7128S_1DCODE
COMP_7128A_IDCODE
COMP_7160S_1DCODE
COMP_7192S_1DCODE
COMP_7256S_1DCODE
COMP_7256A_1DCODE

COMP_7032AE

COMP_7064AE_
COMP_7128AE_

COMP_7256AE_
COMP_7512AE_
PRE_IR = 0;
PRE_DR = 0;
POST_ IR = 0;
POST DR = 0;

BIN 10111011000000000100110010010000;
BIN 10111011000000000000001010010000;
BIN 10111011000000000001001010010000;
BIN 10111011000000000110101010010000;

BIN 10111011000001101010010011100000;
BIN 10111011000001101010010011100000;

= 0,
= 0;
= 0;
= 0;
= O;
= 0;
= 0;
= 0;
= O;
= 0;
= 0;
= 0;
= O;
IDCODE = 0;
IDCODE = 0O;
IDCODE = O;
IDCODE = 0O;
IDCODE = 0O;

SET_ID EXPECTED[32]

COMPARE_FLAG1
COMPARE_FLAG2
COMPARE_FLAG =

0:
0;

BIN 10111011000001001100000011100000;
BIN 10111011000000100110000011100000;
BIN 10111011000000010100100011100000;
BIN 10111011000000010100100011100000;
BIN 10111011000000000110100011100000;
BIN 10111011000001001001100011100000;

" This information is what is expected to be shifted out of the instruction

register

BOOLEAN expected_data[10] = BIN 0101010101;

BOOLEAN

ir_data[10];

Example 3: Sample 3

" These values default to 0, so if you have a single device JTAG chain, you

do

In-System Programmability Guidelines

(;:J Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100

16 2014.09.22

Porting the Jam Player
" not have to set these values.

PREIR PRE_IR;

POSTIR POST_IR;

PREDR PRE_DR;

POSTDR POST_DR;

INTEGER 1;

U B Determine Action #HHHHHHHHHHHHHHH R

LET COMPARE_FLAG1= COMP_9320_ IDCODE || COMP_9400_ IDCODE || COMP_9480_IDCODE

11

COMP_9560_IDCODE || COMP_7032S_IDCODE || COMP_7064S_IDCODE ||
COMP_7096S_IDCODE || COMP_7032AE_IDCODE || COMP_7064AE_IDCODE ||
COMP_7128AE_1DCODE;
LET COMPARE_FLAG2 =
COMP_7160S_IDCODE
| COMP_7192S IDCODE || COMP_7256S_IDCODE || COMP_7256A_ IDCODE ||
COMP_7256AE_IDCODE || COMP_7512AE_TDCODE;

LET COMPARE_FLAG = COMPARE_FLAG1 || COMPARE_FLAG2;

IF COMPARE_FLAG != 1 THEN GOTO NO_OP;

FOR i=0 to 31;

COMP_7128S_IDCODE || COMP_7128A IDCODE ||

IF COMP_9320 IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9320[i];

IF COMP_9400_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9400[i];

IF COMP_9480_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9480[i];

IF COMP_9560_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9560[i];

IF COMP_7032S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7032S[i];
IF COMP_7064S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7064S[i];
FOR i=0 to 31;

IF COMP_9320 IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9320[i];

IF COMP_9400_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9400[i];

IF COMP_9480_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9480[i];

IF COMP_9560_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_9560[i];

IF COMP_7032S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7032S[i];
IF COMP_7064S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7064S[i];
IF COMP_7128S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7128S[i];
IF COMP_7128A_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7128A[i];
IF COMP_7160S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7160S[i];
IF COMP_7192S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7192S[i];
IF COMP_7256S_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7256S[i];
IF COMP_7256A_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7256A[i];
IF COMP_7032AE_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7032AE[i];
IF COMP_7064AE_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7064AE[i];
IF COMP_7128AE_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7128AE[i];
IF COMP_7256AE_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7256AE[i];
IF COMP_7512AE_IDCODE == 1 THEN LET SET_ID_EXPECTED[i] = ID_7512AE[i];

NEXT 1I;

Example 4: Sample 4

T A Actual Load ing HHHHHHHIHHHHHHEHHHHHHEEHHH
IRSTOP I1RPAUSE;

STATE RESET;
IRSCAN 10, 1
STATE IDLE;
DRSCAN 32, ONES_DATA[O..31], CAPTURE read_data[O..31];

T HHHHHHHHHHHHHHHHH A PrinNCINg HHHHHHHHHHHHHHHHHH

_IDCODE[0..9], CAPTURE ir_data[0..9];

PRINT "EXPECTED

IRSCAN : 1010101010™;

PRINT "ACTUAL IRSCAN: ",ir_data[0],

ir_data[4],

ir_data[5],

ir_data[6],

ir_data[1],

ir_data[7],

ir_data[2],

ir_data[8],

ir_data[3],
ir_data[9];

PRINT "*;PRINT "EXPECTED IDCODE : ", SET_ID_EXPECTED[O0], SET ID_EXPECTED[1].
SET_ID_EXPECTED[2], SET_ID_EXPECTED[3], SET_ID_EXPECTED[4].
SET_ID_EXPECTED[5], SET_ID_EXPECTED[6], SET_ID_EXPECTED[7].
SET_ID_EXPECTED[8], SET_ID_EXPECTED[9], SET_ ID_EXPECTED[10],
SET_ID_EXPECTED[11], SET_ID_EXPECTED[12], SET ID_EXPECTED[13],
SET_ID_EXPECTED[14], SET_ID_EXPECTED[15], SET_ID_EXPECTED[16],

In-System Programmability Guidelines

[;:J Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AN-100
2014.09.22

ISP through In-Circuit Testers 17

SET_ID_EXPECTED[17], SET_ID_EXPECTED[18], SET_ID_EXPECTED[19],
SET_ID_EXPECTED[20], SET_ID_EXPECTED[21], SET_ID_EXPECTED[22],
SET_ID_EXPECTED[23], SET_ID_EXPECTED[24], SET_ID_EXPECTED[25],
SET_ID_EXPECTED[26], SET_ID_EXPECTED[27], SET_ID_EXPECTED[28],
SET_ID_EXPECTED[29], SET_ID_EXPECTED[30], SET_ID_EXPECTED[31];

PRINT "ACTUAL IDCODE : ', READ_DATA[O], READ_DATA[1], READ_DATA[2?],
READ_DATA[3], READ_DATA[4], READ DATA[5], READ_DATA[6], READ_DATA[7],
READ_DATA[8], READ_DATA[9], READ_DATA[10], READ_DATA[11], READ_DATA[12],
READ_DATA[13], READ_DATA[14], READ_DATA[15], READ_DATA[16], READ_DATA[17],
READ_DATA[18], READ_DATA[19], READ_DATA[20], READ_DATA[21], READ_DATA[22],
READ_DATA[23], READ_DATA[24], READ_DATA[25], READ_DATA[26], READ_DATA[27],
READ_DATA[28], READ_DATA[29], READ_DATA[30], READ_DATA[31];

GOTO END;

T R 1T no parameters are set #fHHHHHHHHHHIHHHHHHHE
NO_OP: PRINT "jam [-d<var=val>] [-p<port>] [-s<port>] IDCODE.jam";

PRINT "-d : initialize variable to specified value";

PRINT "-p : parallel port number or address <for ByteBlaster>";

PRINT "-s : serial port name <for BitBlaster>";

PRINT ™ ™;

PRINT "Example: To compare IDCODE of the 4th device in a chain of 5 Altera
"; PRINT

"devices with EPM7192S I1DCODE";

PRINT ™ ™;

PRINT "jam -dCOMP_7192S_IDCODE=1 -dPRE_IR=10 -dPOST_IR=30 -dPRE_DR=1";
PRINT ""dPOST_DR=3 -p378 IDCODE.jam";

PRINT ™ ™;

END:

EXIT O;

ISP through In-Circuit Testers

This section addresses specific issues associated with programming ISP-capable devices through in-circuit
testers.

Using “F” vs. Non-“F” Devices

MAX devices use either fixed algorithms (“F”) or branching algorithms (non-“F”). Most in-circuit tester
file formats—for example, .svf, Pattern Capture Format (.pcf), DTS, and ASC, are “fixed” or deterministic,
which means they can only support one fixed algorithm without branching. The MAX+PLUS II software
generates SVF Files for “F” devices. Because the algorithms in SVF Files are constant, you can always use
these files to program future “F” devices.

Altera does not recommend programming non-“F” devices via in-circuit testers. Non-“F” devices require
branching based on three variables read from the device: programming pulse time, erase pulse time, and
manufacturer silicon ID or JTAG ID. These three variables are programmed into all non-“F” Altera
devices. Using only “F” devices eliminates problems you may experience if these variables change.

Maximum Vectors per File

The file formats for “bed of nails” in-circuit testers generally require very large vector files for in-system
programming. When the file is larger than the available memory in the tester, you must divide the file into
smaller files. For example, Altera’s svf2pcf utility automatically divides a single .svf file into several smaller
files. In addition, the utility allows users to either specify the maximum number of vectors per file or use a
default value. If you put too many vectors in a single file, an error message occurs. If you receive this error,
simply reduce the number of vectors per file.

In-System Programmability Guidelines Altera Corporation

C] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

18 » . AN-100
Document Revision History 2014.09.22

Pull-Up and Pull-Down Resistors

Testers may require pull-up or pull-down resistors on various signal traces. Contact the in-circuit tester
manufacturer directly for specific information.

Related Information

AN 425: Using the Command-Line Jam STAPL Solution for Device Programming

Provides more information about using Agilent’s 3070 in-circuit tester to in-system program MAX IT and
MAX'V devices.

Document Revision History

I I S

September 2014 2014.09.22° |, Converted document to the new template.

« Updated document to include information about MAX 10 devices.

December 2010 4.0 « Converted document to the new template.
« Updated document to include information about MAX IT and
MAX 'V devices.
Altera Corporation In-System Programmability Guidelines

D Send Feedback

http://www.altera.com/literature/an/an425.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Programmability%20Guidelines%20(AN-100%202014.09.22)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	In-System Programmability Guidelines
	General ISP Guideline
	Operating Conditions
	ISP Voltage
	Input Voltages

	User Flash Memory Operations During In-System Programming
	Interrupting In-System Programming
	MultiVolt Devices and Power-Up Sequences
	I/O Pins Tri-Stated During In-System Programming
	Pull-Up and Pull-Down of JTAG Pins During In-System Programming

	IEEE Std. 1149.1 Signals
	TCK Signal
	Programming Through a Download Cable
	Disabling IEEE Std. 1149.1 Circuitry
	Working with Different Voltage Levels

	Sequential versus Concurrent Programming
	Sequential Programming
	Concurrent Programming
	Selecting Sequential or Concurrent Programming
	Devices in Different Modes

	ISP Troubleshooting Guidelines
	Invalid ID and Unrecognized Device Messages
	Verify the JTAG Chain Continuity
	Check the Voltage Levels of the Board During In-System Programming
	Random Signals on JTAG Pins
	Software Issues

	ISP through Embedded Processors
	Processor and Memory Requirements
	Porting the Jam Player

	ISP through In-Circuit Testers
	Document Revision History

