Checklist of Design Considerations for SoC FPGAs Here are several key items to consider when selecting an SoC FPGA: | System Performance | System Cost | |--|--| | □ CPU clock rate □ Non-blocking L3 interconnect □ Processor-to-FPGA interconnect bandwidth □ Low latency processor-to-FPGA interconnect bandwidth □ FPGA-to-processor interconnect bandwidth □ FPGA-to-DDR interconnect bandwidth □ Smart memory controller for maximum throughput with lower | Component cost savings from processor/digital signal processor (DSP)/FPGA integration into single chip Single- or dual-core processor option Number/type of peripherals integrated in HPS Shared memory between processor and FPGA for lower memor component cost Integrated PLLs for fewer external oscillators | | power memory All masters (FPGA and HPS) can share memory coherently with the processor | Transceivers available in all devices Integrated PCIe interface available in all devices Number of power rails | | ☐ Multiple hardened DDR controllers in FPGA | No need to add power-off sequencing circuitry Board space, routing, and trace savings from integrated device | | Reliability Error correction code (ECC) protection throughout processor system | Horizontal and vertical package migration within SoC FPGAs fo
common platform | | L2 cacheOn-chip RAM | Power Consumption | | Flash I/F Hard processor system (HPS) peripherals ECC protection on 8, 16, and 32 bit external memory interface Shared memory protection for multiple masters Address range protection per port and per master "Fail-safe" recovery mechanism for both physical and logical boot defects No power-off sequencing requirement | Component power savings from processor/DSP/FPGA integration into single chip System memory power savings from using smart memory controller FPGA power down option Number of power rails Power supply efficiency and power consumption Shared memory between processor and FPGA for lower system memory power | | Flexibility | Future Roadmap | | Multiple boot/configuration options ○ Processor first ○ FPGA first ○ Processor and FPGA independently □ FPGA density range □ Transceivers available in all devices □ Integrated PCle® interface available in all devices □ Maximum addressable main memory address space □ Multiple hardened DDR controllers in FPGA □ Finer control over DDR port priorities | Vendor investment in SoC FPGA product line Vendor engineering team background and SoC experience Current 28 nm silicon process technology 20 nm silicon process technology plans 14 nm silicon process technology plans Processor technology innovations FPGA technology innovations Development tools roadmap Typical product longevity | | Multiple on-chip FPGA interfaces (AXI™, Avalon®-MM, Avalon-ST) Can use multiple flash devices (e.g. quad SPI + NAND) Larger quad serial peripheral interface (SPI) device support (multiple images) Hardware ECC for NAND flash Direct memory access (DMA) request interfaces for FPGA and HPS peripherals Coherent memory access for FPGA and HPS peripherals CPU reset does not force FPGA reconfiguration More processor and system trace options No need to add power-off sequencing circuitry Horizontal and vertical package migration within SoC FPGAs | Development Tools ARM compatibility Software development environment (e.g. Eclipse) Compiler support Hardware vector floating point (VFP) and ARM® Neon™ support Operating system board support packages Optimized multi core debugging FPGA-adaptive debugging ARM CoreSight™ Compliant processor-FPGA cross-triggering System Trace Macrocell (STM) Global timestamping Single cable for in-system debug Trace buffer size Non-intrusive code profiling FPGA logic analyzer |