
Draft for Review

Intel® Platform Innovation Framework
for EFI

Firmware File System
Specification

Draft for Review

Version 0.9

September 16, 2003

Firmware File System Specification Draft for Review

ii September 2003 Version 0.9

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NOWARRANTIES WHATSOEVER, INCLUDING ANYWARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANYWARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright  2000–2003, Intel Corporation.

Intel order number xxxxxx-001

Draft for Review

Version 0.9 September 2003 iii

Revision History

Revision Revision History Date

0.9 First public release. 9/16/03

Firmware File System Specification Draft for Review

iv September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 v

Contents

1 Introduction ..7
Overview..7
Target Audience ..7
Conventions Used in This Document...8

Data Structure Descriptions ..8
Pseudo-Code Conventions ...8
Typographic Conventions ...9

2 Design Discussion...11
Introduction..11
File Format ..11

Overview...11
FFS GUID ...11
FFS File Image ...12

FFS File Integrity and State ...13
Detecting FFS File Corruption...13
File State Transitions ..14

Overview ..14
Initial State..14
Creating a File ..15
Deleting a File...17
Updating a File ...17

FFS-Defined File Types ...18
Overview...18
Pad Files (File Type 0xF0) ..19

Pad File Overview ..19
Reclaiming a Pad File’s Free Space...19
Updating a File Using a Pad File’s Free Space ..22
Updating Multiple Files in Lockstep ..23

Volume Top File...23

3 Code Definitions...25
Introduction..25
File Format ..26
File Format ..26

EFI_FIRMWARE_FILE_SYSTEM_GUID ..26
EFI_FFS_FILE_HEADER ...27
EFI_FFS_FILE_TAIL...32

Pad Files..33
EFI_FV_FILETYPE_FFS_PAD ...33

Volume Top File...34
EFI_FFS_VOLUME_TOP_FILE_GUID ...34

http://www.intel.com/technology/framework/spec.htm

Firmware File System Specification Draft for Review

vi September 2003 Version 0.9

4 Pseudo Code ..35
FFS Initialization ..35
Pre-FFS Initialization Access to Files...39

Figures
Figure 2-1. Typical FFS File Layout ..12
Figure 2-2. Creating a File ..15
Figure 2-3. Updating a File ...17
Figure 2-4. Reclaiming a Pad File’s Free Space...20
Figure 2-5. Updating a File Using a Pad File’s Free Space...22
Figure 3-1. Bit Allocation of FFS Attributes ...29

Tables
Table 2-1. FFS-Defined File Types ...18
Table 3-1. Supported FFS Alignments..30

Draft for Review

Version 0.9 September 2003 7

1
Introduction

Overview
This specification defines the core code that is required for an implementation of the Firmware File
System (FFS) of the Intel® Platform Innovation Framework for EFI (hereafter referred to as the
“Framework”). This FFS specification does the following:

• Describes the basic components of the FFS
• Defines basic operations that may be performed with the FFS
• Provides code definitions for FFS-related data types and structures that are architecturally

required by the Intel® Platform Innovation Framework for EFI Architecture Specification
• Provides pseudo code that describes methods for initializing the FFS and accessing file prior to

the FFS being initialized

Target Audience
This document is intended for the following readers:

• Independent hardware vendors (IHVs) and original equipment manufacturers (OEMs) who will
be implementing firmware components that are stored in firmware volumes

• BIOS developers, either those who create general-purpose BIOS and other firmware products
or those who modify these products for use in Intel architecture®–based products

Firmware File System Specification Draft for Review

8 September 2003 Version 0.9

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®

processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Draft for Review Introduction

Version 0.9 September 2003 9

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

Firmware File System Specification Draft for Review

10 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 11

2
Design Discussion

Introduction
The Framework Firmware File System (FFS) is a binary layout of file storage for firmware
volumes. It is a flat file system in that there is no provision for any directory hierarchy; rather, files
all exist in the root directly. Files are stored, in essence, end to end without any directory entry to
describe which files are present. Parsing the contents of a firmware volume to obtain a listing of
files present requires walking the firmware volume from beginning to end. This process is
abstracted from consumers by the Firmware Volume Protocol, which is expected to be produced by
the FFS driver.

All files stored with the FFS must follow the Framework image format described in the Intel®
Platform Innovation Framework for EFI Firmware Volume Specification.

The file header provides for several levels of integrity checking to help detect file corruption,
should it occur for some reason. Authentication (verifying the origin) of the files is not supported
directly by the FFS, but it is supported by the Framework image format.

This section explains the following:

• FFS file format
• FFS file integrity and state
• FFS-defined file types
• Volume Top File (VTF)

See Code Definitions for the type definitions of any code that is referenced in this section. See the
Intel® Platform Innovation Framework for EFI Firmware Volume Specification for the definition
of the Firmware Volume Protocol and the Framework image format.

File Format

Overview
This section describes the binary format of the FFS, including the following:

• FFS GUID
• FFS file image

See Code Definitions: File Format for the corresponding code definitions that are described in this
section.

FFS GUID
The firmware volume header contains a data field for the file system Globally Unique Identifier
(GUID). See the Intel® Platform Innovation Framework for EFI Firmware Volume Block
Specification for more information on the firmware volume header. For the FFS file system, the
GUID is defined as EFI_FIRMWARE_FILE_SYSTEM_GUID; see Code Definitions for the GUID
definition.

Firmware File System Specification Draft for Review

12 September 2003 Version 0.9

FFS File Image
All FFS files begin with a header that is 8 bytes aligned with respect to the beginning of the
firmware volume. FFS files can contain the following parts:

• Header
• Data
• Tail

It is possible to create a file that has only a header and no data, which means it consumes 24 bytes
of space. This type of file is known as a zero-length file.

If the file contains data, the data immediately follows the header. The format of the data within a
file is defined by the Type field in EFI_FFS_FILE_HEADER.

If indicated in the Attributes field of EFI_FFS_FILE_HEADER, the last two bytes of the file
are defined to be the tail. The tail is used for file integrity checking and is optional. Zero-length
files (files with only a header but no data area) and pad files do not have a tail.

See the EFI_FFS_FILE_HEADER and EFI_FFS_FILE_TAIL definitions in Code Definitions:
File Format for more information.

The figure below illustrates the layout of a typical FFS file.

Name

IntegrityCheckTypeAttributes

State Size

Tail (optional)

File data
Follows EFI image format defined in Firmware Volume Specification

31 1516 0

EFI_FFS_FILE_TAIL

File data.

EFI_FFS_FILE_HEADER

Figure 2-1. Typical FFS File Layout

Draft for Review Design Discussion

Version 0.9 September 2003 13

FFS File Integrity and State

Detecting FFS File Corruption
File corruption, regardless of the cause, must be detectable so that appropriate file system repair
steps may be taken. File corruption can come from several sources but generally falls into three
categories:

• General failure
• Erase failure
• Write failure

A general failure is defined to be apparently random corruption of the storage media. This
corruption can be caused by storage media design problems or storage media degradation, for
example. This type of failure can be as subtle as changing a single bit within the contents of a file.
With good system design and reliable storage media, general failures should not happen. Even so,
the FFS enables detection of this type of failure.

An erase failure occurs when a block erase of firmware volume media is not completed due to a
power failure or other system failure. While the erase operation is not defined, it is expected that
most implementations of FFS that allow file write and delete operations will also implement a
mechanism to reclaim deleted files and coalesce free space. If this operation is not completed
correctly, the file system can be left in an inconsistent state.

Similarly, a write failure occurs when a file system write is in progress and is not completed due to
a power failure or other system failure. This type of failure can leave the file system in an
inconsistent state.

All of these failures are detectable during FFS initialization, and, depending on the nature of the
failure, many recovery strategies are possible. Careful sequencing of the State bits during normal
file transitions is sufficient to enable subsequent detection of write failures. However, the State
bits alone are not sufficient to detect all occurrences of general and/or erase failures. These types of
failures require additional support, which is enabled with the file header IntegrityCheck field.

See Pseudo Code: FFS Initialization for sample code that provides a method of FFS initialization
that can detect FFS file corruption, regardless of the cause.

Firmware File System Specification Draft for Review

14 September 2003 Version 0.9

File State Transitions

Overview
There are three basic operations that may be done with the FFS:

• Creating a file
• Deleting a file
• Updating a file

All state transitions must be done carefully at all times to ensure that a power failure never
results in a corrupted firmware volume. This transition is managed using the State field in
the file header.

For the purposes of the examples below, positive decode logic is assumed
(EFI_FVB_ERASE_POLARITY = 0). In actual use, the EFI_FVB_ERASE_POLARITY in the
firmware volume header is referenced to determine the truth value of all FFS State bits. Note
that Intel® flash memory technologies erase to one. All State bit transitions must be atomic
operations. Further, except when specifically noted, only the most significant State bit that is
TRUE has meaning. Lower-order State bits are superceded by higher-order State bits.

Type EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER in the
Intel® Platform Innovation Framework for EFI Firmware Volume Block Specification.

Initial State
The initial condition is that of “free space.” All free space in a firmware volume must be
initialized such that all bits in the free space contain the value of EFI_FVB_ERASE_POLARITY.
As such, if the free space is interpreted as an FFS file header, all State bits are FALSE.

Type EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER in the
Intel® Platform Innovation Framework for EFI Firmware Volume Block Specification.

Draft for Review Design Discussion

Version 0.9 September 2003 15

Creating a File
A new file is created by allocating space from the firmware volume immediately beyond the end of
the preceding file (or the firmware volume header if the file is the first one in the firmware
volume). The figure below illustrates the steps to create a new file, which are detailed below the
figure.

Change the
EFI_FILE_HEADER_
CONSTRUCTION

bit to TRUE

Change the
EFI_FILE_HEADER_
VALID bit to TRUE

Change the
EFI_FILE_DATA_
VALID bit to TRUE

Complete all fields in
the header

Write the file data

File is
“free
space”

File is
created

Figure 2-2. Creating a File

As shown in the figure above, the following steps are required to create a new file:

1. Allocate space in the firmware volume for a new EFI_FFS_FILE_HEADER and complete all
fields of the header (except for the State field, which is updated independently from the rest
of the header). This allocation is done by interpreting the free space as a file header and
changing the EFI_FILE_HEADER_CONSTRUCTION bit to TRUE. The transition of this bit
to the TRUE state must be atomic and fully complete before any additional writes to the
firmware volume are made. This transition yields State = 00000001b, which indicates
the header construction has begun but has not yet been completed. This value has the effect of
“claiming” the FFS header space from the firmware volume free space.

Firmware File System Specification Draft for Review

16 September 2003 Version 0.9

While in this state, the following fields of the FFS header are initialized and written to the
firmware volume:

• Name

• IntegrityCheck.Header

• Type

• Attributes

• Size

The value of IntegrityCheck.Header is calculated as described in
EFI_FFS_FILE_HEADER in “Code Definitions.”

2. Mark the new header as complete and write the file data. To mark the header as completed, the
EFI_FILE_HEADER_VALID bit is changed to TRUE. The transition of this bit to the TRUE
state must be atomic and fully complete before any additional writes to the firmware volume
are made. This transition yields State = 00000011b, which indicates the header
construction is complete but the file data has not yet been written. This value has the effect of
“claiming” the full length of the file from the firmware volume free space. Once the
EFI_FILE_HEADER_VALID bit is set, no further changes to the following fields may be
made.

• Name

• IntegrityCheck.Header

• Type

• Attributes

• Size

While in this state, the file data, IntegrityCheck.File, and the file tail are written to the
firmware volume. The order in which these are written does not matter. The calculation of the
values for IntegrityCheck.File and the file tail are described in
EFI_FFS_FILE_HEADER and EFI_FFS_FILE_TAIL in “Code Definitions.” If the
FFS_ATTRIB_TAIL_PRESENT bit of the Attributes field is clear, the file tail does not
exist. If the FFS_ATTRIB_TAIL_PRESENT bit of the Attributes field is set, the value
of IntegrityCheck.File must be included in the calculation of the tail value.

3. Mark the data as valid. To mark the data as valid, the EFI_FILE_DATA_VALID bit is
changed to TRUE. The transition of this bit to the TRUE state must be atomic and fully
complete before any additional writes to the firmware volume are made. This transition yields
State = 00000111b, which indicates the file data is fully written and is valid.

See Updating Multiple Files in Lockstep for details on creating and updating multiple files.

Draft for Review Design Discussion

Version 0.9 September 2003 17

Deleting a File
Any file with EFI_FILE_HEADER_VALID set to TRUE and EFI_FILE_HEADER_INVALID
and EFI_FILE_DELETED set to FALSE is a candidate for deletion.

To delete a file, the EFI_FILE_DELETED bit is set to the TRUE state. The transition of this bit to
the TRUE state must be atomic and fully complete before any additional writes to the firmware
volume are made. This transition yields State = 0001xx11b, which indicates the file is
marked deleted. Its header is still valid, however, in as much as its length field is used in locating
the next file in the firmware volume.

NOTE
The EFI_FILE_HEADER_INVALID bit must be left in the FALSE state.

Updating a File
A file update is a special case of file creation where the file being added already exists in the
firmware volume. At all times during a file update, only one of the files, either the new one or the
old one, is valid at any given time. This validation is possible by using the
EFI_FILE_MARKED_FOR_UPDATE bit in the old file.

The figure below illustrates the steps to update a file, which are detailed below the figure.

File is
created

In the old file, change the
EFI_FILE_MARKED_

FOR_UPDATE bit to TRUE

Create the new file

Delete the old file

Writing the
EFI_FILE_DATA_VALID
bit to TRUE in the new file
invalidates the old file New

file is
created

Old file
is

deleted

See Deleting a File.

See Creating a File.

Figure 2-3. Updating a File

Firmware File System Specification Draft for Review

18 September 2003 Version 0.9

As shown in the figure above, the following steps are required to update a file:

1. Set the EFI_FILE_MARKED_FOR_UPDATE bit to TRUE in the old file. The transition of this
bit to the TRUE state must be atomic and fully complete before any additional writes to the
firmware volume are made. This transition yields State = 00001111b, which indicates
the file is marked for update. A file in this state remains valid as long as no other file in the
firmware volume has the same name and a State of 000001xxb.

2. Create the new file following the steps described in Creating a File. When the new file becomes
valid, the old file that was marked for update becomes invalid. That is to say, a file marked for
update is valid only as long as there is no file with the same name in the firmware volume that
has a State of 000001xxb. In this way, only one of the files, either the new or the old, is
valid at any given time. The act of writing the EFI_FILE_DATA_VALID bit in the new file’s
State field has the additional effect of invalidating the old file.

3. Delete the old file following the steps described in Deleting a File.

See Updating Multiple Files in Lockstep for details on creating and updating multiple files.

FFS-Defined File Types

Overview
The Intel® Platform Innovation Framework for EFI Firmware Volume Specification defines a
number of file types and associated image formats. It also reserves file types 0xF0 to 0xFF for
definition by the file system. The table below lists the FFS definitions for these file types. The rest
of this section describes pad files.

Table 2-1. FFS-Defined File Types

Type Name

0xF0 Pad file. See the Pad Files
section.

0xF1–0xFF Reserved for future use.

Draft for Review Design Discussion

Version 0.9 September 2003 19

Pad Files (File Type 0xF0)

Pad File Overview
A pad file gets its name from one of its common uses. It can be used to pad the location of the file
that follows it in the storage media. This padding may be done for a variety of reasons, including
the following:

• Fixing the location of a file in a firmware volume
• Consuming space before a Volume Top File
• Guaranteeing data alignment for a file with the alignments bits set in the Attributes field
• Performing file update operations where multiple files within a firmware volume must be

updated in lockstep

The normal state of any valid (not deleted or invalidated) file is that both its header and data are
valid. This status is indicated using the State bits with State = 00000111b. Pad files
differ from all other types of files in that any pad file in this state must not have any data written
into the data space. It is essentially a file filled with free space.

The FFS_ATTRIB_TAIL_PRESENT bit in the Attributes field must be clear for pad files.
This restriction is because if the FFS_ATTRIB_TAIL_PRESENT bit were set, it would not be
possible to reclaim the free space from the pad file (see Reclaiming Pad Free Space). Because the
file is free space, an extended check of the file is simply a check for any nonfree data.

Reclaiming a Pad File’s Free Space
Because a pad file’s data space is not used, it is desirable to reclaim this free space for use if
possible. The free space is reclaimed by using two of the pad file’s State bits.

Because the data area of a pad file with State = 00000111b is guaranteed to be unperturbed
free space, the conventional use of the EFI_FILE_MARKED_FOR_UPDATE bit makes no sense.
In pad files, the meaning of this bit is overloaded to indicate that the data area is not unperturbed
free space and that it may have had some data written to it. This overloading is the key to
reclaiming the free space contained in a pad file. The figure below illustrates the steps to reclaim a
pad file’s free space, which are detailed below the figure.

Firmware File System Specification Draft for Review

20 September 2003 Version 0.9

Pad file
is

created

Set the
EFI_FILE_MARKED_
FOR_UPDATE bit in the

pad file to TRUE

Create a new file in the pad
file’s data area (free space)

Create a new pad file if
the new file does not
completely fill the pad
file’s data area.

New file is
created in
pad file's
data area

Making the header invalid tells
the file system to skip the pad
file’s header and look for the
new file header in what was the
pad file’s data area. Set the EFI_FILE_

HEADER_INVALID
bit in the original
pad file to TRUE

Pad file
is invalid

Figure 2-4. Reclaiming a Pad File’s Free Space

Draft for Review Design Discussion

Version 0.9 September 2003 21

As shown in the figure above, the following steps are required to reclaim the free space contained
within a pad file:

1. Set the EFI_FILE_MARKED_FOR_UPDATE in the pad file to TRUE. The transition of this bit
to the TRUE state must be atomic and fully complete before any additional writes to the
firmware volume are made. This transition yields State = 00001111b, which indicates
the pad file’s data area is not guaranteed to be unperturbed free space.

2. Create a completely new file in the pad file’s data area (free space). If the new file does not
have any special alignment requirement, it is created at the lowest address within the pad file. If
there is an alignment requirement, it may be necessary to precede the desired file with another
pad file, all written to the original pad file’s data area. Regardless, the new file(s) must be
written completely, including the file header and data. The State of this file is written such
that State = 00000111b. Because it is really part of the pad file’s data area, it is not yet
visible as part of the FFS.

3. If the new file created in step 2 does not completely fill the pad file’s data area, another pad file
must be created to fill this space. This file is created in the same manner as in step 2, except the
beginning of the new pad file’s header follows the data for the file created in step 2.

4. Set the EFI_FILE_HEADER_INVALID bit in the original pad file to TRUE. The transition of
this bit to the TRUE state must be atomic and fully complete before any additional writes to the
firmware volume are made. This transition yields State = 00101111b, which indicates the
pad file’s header is invalid. Because the pad file’s header is now invalid, the Length field in
the pad file’s header is also no longer valid. The effect of making the header invalid is to skip
only the pad file’s header and look for another file header in what was the pad file’s data area.
Because the new file’s header exists at this location, it is correctly interpreted as a valid file.

Firmware File System Specification Draft for Review

22 September 2003 Version 0.9

Updating a File Using a Pad File’s Free Space
Updating a file using a pad file’s free space is very similar to a normal file update, which is
described in Updating a File in File State Transitions. The figure below illustrates the steps to
update a file using a pad file’s free space, which are detailed below the figure.

Pad file
is

created

Set the
EFI_FILE_MARKED_
FOR_UPDATE bit in the

pad file to TRUE

Create a new file in the pad
file’s data area (free space)

Create a new pad file if
the new file does not
completely fill the pad
file’s data area.

New file is
created in
pad file's
data area

Making the header invalid tells
the file system to skip the pad
file’s header and look for the
new file header in what was the
pad file’s data area.

This action makes the new file
valid and the original pad file
invalid.

Set the
EFI_FILE_MARKED_
FOR_UPDATE bit to

TRUE in the original file
targeted for update

Set the EFI_FILE_
HEADER_INVALID
bit in the original
pad file to TRUE

Delete the old file

See Deleting a File.

Old file
is

deleted

Figure 2-5. Updating a File Using a Pad File’s Free Space

Draft for Review Design Discussion

Version 0.9 September 2003 23

As shown in the figure above, the following steps are required to update a file using a pad file’s free
space:

1. Set the EFI_FILE_MARKED_FOR_UPDATE in the pad file to TRUE. The transition of this bit
to the TRUE state must be atomic and fully complete before any additional writes to the
firmware volume are made. This transition yields State = 00001111b, which indicates the
pad file’s data area is not guaranteed to be unperturbed free space.

2. Create a completely new file in the pad file’s data area (free space) at the lowest address. If the
new file has special alignment requirements, it must be handled in the same manner as in
Reclaiming Pad Free Space. This new file must be written completely, including the file header
and data. The State bit of this file is written such that State = 00000111b. Because it is
really part of the pad file’s data area, it is not yet visible as part of the FFS.

3. If the new file created in step 2 does not completely fill the pad file’s data area, another pad file
must be created to fill this space. This file is created in the same manner as in step 2, except the
beginning of the new pad file’s header follows the data for the file created in step 2.

4. Set the EFI_FILE_MARKED_FOR_UPDATE bit to TRUE in the original file that is targeted for
update. The transition of this bit to the TRUE state must be atomic and fully complete before
any additional writes to the firmware volume are made.

5. Set the EFI_FILE_HEADER_INVALID bit in the original pad file to TRUE. The transition of
this bit to the TRUE state must be atomic and fully complete before any additional writes to the
firmware volume are made. This transition yields State = 00101111b, which indicates the
pad file’s header is invalid. Because the pad file’s header is now invalid, the Length field in
the pad file’s header is also no longer valid. The effect of making the header invalid is to skip
only the pad file’s header and look for another file header in what was the pad file’s data area.
Because the new file’s header exists at this location, it is correctly interpreted as a valid file.

6. Delete the original file that was targeted for update following the steps described in Deleting a
File in File State Transitions.

Updating Multiple Files in Lockstep
It is possible to update multiple files in a single firmware volume in lockstep using the technique
described in Updating a File Using a Pad File’s Free Space. To update multiple files, write
multiple files to the pad file’s data area in step 2. Then mark all of the corresponding original files
in step 5 and delete them in step 6. A pad file can be created explicitly for this purpose.

Volume Top File
A Volume Top File (VTF) is a file that must be located such that the last byte of the file is also the
last byte of the firmware volume. Regardless of the file type, a VTF must have the file name GUID
of EFI_FFS_VOLUME_TOP_FILE_GUID. See EFI_FFS_VOLUME_TOP_FILE_GUID in
“Code Definitions” for the GUID definition.

FFS driver code must be aware of this GUID and insert a pad file as necessary to guarantee the
VTF is located correctly at the top of the firmware volume on write and update operations. File
length and alignment requirements must be consistent with the top of volume. Otherwise, a write
error occurs and the firmware volume is not modified.

Firmware File System Specification Draft for Review

24 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 25

3
Code Definitions

Introduction
This section provides the code definitions for the following data types and structures for the FFS.
Some type definitions are not in their own section and can be found in “Related Definitions” of the
parent data structure definition.

• EFI_FIRMWARE_FILE_SYSTEM_GUID

• EFI_FFS_FILE_HEADER

• EFI_FFS_INTEGRITY_CHECK

• EFI_FFS_FILE_ATTRIBUTES

• EFI_FFS_FILE_STATE

• EFI_FFS_FILE_TAIL

• EFI_FV_FILETYPE_FFS_PAD

• EFI_FFS_VOLUME_TOP_FILE_GUID

Firmware File System Specification Draft for Review

26 September 2003 Version 0.9

File Format

EFI_FIRMWARE_FILE_SYSTEM_GUID

Summary
The firmware volume header contains a data field for the file system Globally Unique Identifier
(GUID). See the Intel® Platform Innovation Framework for EFI Firmware Volume Block
Specification for more information on the firmware volume header. For the FFS file system, the
GUID is defined below.

GUID
// 7A9354D9-0468-444a-81CE-0BF617D890DF

#define EFI_FIRMWARE_FILE_SYSTEM_GUID \
{ 0x7A9354D9, 0x0468, 0x444a, 0x81, 0xCE, 0x0B, 0xF6 \

0x17, 0xD8, 0x90, 0xDF }

Draft for Review Code Definitions

Version 0.9 September 2003 27

EFI_FFS_FILE_HEADER

Summary
Each file begins with a header that describes the state and contents of the file. The header is 8 bytes
aligned with respect to the beginning of the firmware volume.

Prototype
typedef struct {

EFI_GUID Name;
EFI_FFS_INTEGRITY_CHECK IntegrityCheck;
EFI_FV_FILETYPE Type;
EFI_FFS_FILE_ATTRIBUTES Attributes;
UINT8 Size[3];
EFI_FFS_FILE_STATE State;

} EFI_FFS_FILE_HEADER;

Parameters
Name

This GUID is the file name. It is used to uniquely identify the file. There may be
only one instance of a file with the file name GUID of Name in any given firmware
volume.

IntegrityCheck

Used to verify the integrity of the file. Type EFI_FFS_INTEGRITY_CHECK is
defined in “Related Definitions” below.

Type

Identifies the type of file. Type EFI_FV_FILETYPE is defined in the Intel®
Platform Innovation Framework for EFI Firmware Volume Specification. FFS-
specific file types are defined in EFI_FV_FILETYPE_FFS_PAD.

Attributes

Declares various file attribute bits. Type EFI_FFS_FILE_ATTRIBUTES is
defined in “Related Definitions” below.

Size

The length of the file in bytes, including the FFS header and file tail if it exists. The
length of the file data is either (Size – sizeof(EFI_FFS_FILE_HEADER))
or (Size – sizeof(EFI_FFS_FILE_HEADER) –
sizeof(EFI_FFS_FILE_TAIL)) depending on the existence of the file tail.
This calculation means a zero-length file has a Size of 24 bytes, which is
sizeof(EFI_FFS_FILE_HEADER).

Size is not required to be a multiple of 8 bytes. Given a file F, the next file header is
located at the next 8-byte aligned firmware volume offset following the last byte of
the file F.

Firmware File System Specification Draft for Review

28 September 2003 Version 0.9

State

Used to track the state of the file throughout the life of the file from creation to
deletion. Type EFI_FFS_FILE_STATE is defined in “Related Definitions”
below. See FFS File Integrity and State in Design Discussion for an explanation of
how these bits are used.

Related Definitions
//**
// EFI_FFS_INTEGRITY_CHECK
//**
typedef union {

struct {
UINT8 Header;
UINT8 File;

} Checksum;
UINT16 TailReference;

} EFI_FFS_INTEGRITY_CHECK;

Header

The IntegrityCheck.Checksum.Header field is an 8-bit checksum of the
file header. The State and IntegrityCheck.Checksum.File fields are
assumed to be zero and the checksum is calculated such that the entire header sums to
zero. The IntegrityCheck.Checksum.Header field is valid anytime the
EFI_FILE_HEADER_VALID bit is set in the State field. See FFS File Integrity
and State for more details.

File

If the FFS_ATTRIB_CHECKSUM (see definition below) bit of the Attributes
field is set to one, the IntegrityCheck.Checksum.File field is an 8-bit
checksum of the entire file The State field and the file tail are assumed to be zero
and the checksum is calculated such that the entire file sums to zero.

If the FFS_ATTRIB_CHECKSUM bit of the Attributes field is cleared to zero,
the IntegrityCheck.Checksum.File field must be initialized with a value of
0x55AA.

The IntegrityCheck.Checksum.File field is valid any time the
EFI_FILE_DATA_VALID bit is set in the State field. See FFS File Integrity and
State for more details.

TailReference

IntegrityCheck.TailReference is the full 16 bits of the
IntegrityCheck field. It is used in calculating the value for the file tail if the
FFS_ATTRIB_TAIL_PRESENT bit in the Attributes field is set. See
EFI_FFS_FILE_TAIL for more details.

Draft for Review Code Definitions

Version 0.9 September 2003 29

//**
// EFI_FFS_FILE_ATTRIBUTES
//**

typedef UINT8 EFI_FFS_FILE_ATTRIBUTES;

// FFS File Attributes
#define FFS_ATTRIB_TAIL_PRESENT 0x01
#define FFS_ATTRIB_RECOVERY 0x02
#define FFS_ATTRIB_HEADER_EXTENSION 0x04
#define FFS_ATTRIB_DATA_ALIGNMENT 0x38
#define FFS_ATTRIB_CHECKSUM 0x40

The figure below depicts the bit allocation of the Attributes field in an FFS file’s header.

Figure 3-1. Bit Allocation of FFS Attributes

Following is a description of the fields in the above definition.

FFS_ATTRIB_TAIL_PRESENT Indicates the 16-bit file tail at the end of the file exists. See
EFI_FFS_FILE_TAIL for details.

FFS_ATTRIB_RECOVERY Indicates this file is required to execute a crisis recovery.

FFS_ATTRIB_HEADER_EXTENSION Reserved for use by future revisions of this specification. It
must be set to zero.

Firmware File System Specification Draft for Review

30 September 2003 Version 0.9

FFS_ATTRIB_DATA_ALIGNMENT Indicates that the beginning of the data must be aligned on a
particular boundary relative to the firmware volume base. The
three bits in this field are an enumeration of alignment
possibilities. The firmware volume interface allows alignments
based on powers of two from byte alignment to 64 KB
alignment. FFS does not support this full range. The table
below maps all FFS supported alignments to
FFS_ATTRIB_DATA_ALIGNMENT values and firmware
volume interface alignment values. No other alignments are
supported by FFS. When a file with an alignment requirement is
created, a pad file may need to be created before it to ensure
proper data alignment. See Pad Files (File Type 0xF0) for more
information regarding pad files.

FFS_ATTRIB_CHECKSUM Determines the interpretation of
IntegrityCheck.Checksum.File. See the
IntegrityCheck definition above for specific usage.

The table below maps all FFS-supported alignments to FFS_ATTRIB_DATA_ALIGNMENT values
and firmware volume interface alignment values.

Table 3-1. Supported FFS Alignments

Required Alignment (bytes) Alignment Value in FFS
Attributes Field

Alignment Value in Firmware
Volume Interfaces

1 0 0

2 0 1

4 0 2

8 0 3

16 1 4

128 2 7

512 3 9

1 KB 4 10

4 KB 5 12

32 KB 6 15

64 KB 7 16

Draft for Review Code Definitions

Version 0.9 September 2003 31

//**
// EFI_FFS_FILE_STATE
//**

typedef UINT8 EFI_FFS_FILE_STATE;

// FFS File State Bits
#define EFI_FILE_HEADER_CONSTRUCTION 0x01
#define EFI_FILE_HEADER_VALID 0x02
#define EFI_FILE_DATA_VALID 0x04
#define EFI_FILE_MARKED_FOR_UPDATE 0x08
#define EFI_FILE_DELETED 0x10
#define EFI_FILE_HEADER_INVALID 0x20

All other State bits are reserved and must be set to EFI_FVB_ERASE_POLARITY. See FFS
File Integrity and State for an explanation of how these bits are used. Type
EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER in the Intel®
Platform Innovation Framework for EFI Firmware Volume Block Specification.

Firmware File System Specification Draft for Review

32 September 2003 Version 0.9

EFI_FFS_FILE_TAIL

Summary
The tail follows the data and is the last two bytes of the file’s image in the storage media. The tail
is used for file integrity checking and is present only when the FFS_ATTRIB_TAIL_PRESENT
bit in the Attributes field of the file’s header is set. The file tail is optional and is never
required. It must never be present in zero-length files and pad files.

Prototype
typedef UINT16 EFI_FFS_FILE_TAIL;

Description
If the FFS_ATTRIB_TAIL_PRESENT bit is set, the tail is initialized to the bit-wise NOT of the
header’s IntegrityCheck.TailReference field.

Draft for Review Code Definitions

Version 0.9 September 2003 33

Pad Files

EFI_FV_FILETYPE_FFS_PAD

Summary
A pad file is an FFS-defined file type that is used to pad the location of the file that follows it in the
storage file.

Prototype
#define EFI_FV_FILETYPE_FFS_PAD 0xF0

Description
A pad file is an FFS-defined file type that is used to pad the location of the file that follows it in the
storage file. The normal state of any valid (not deleted or invalidated) file is that both its header and
data are valid. This status is indicated using the State bits with State = 00000111b. Pad
files differ from all other types of files in that any pad file in this state must not have any data
written into the data space. It is essentially a file filled with free space.

The FFS_ATTRIB_TAIL_PRESENT bit in the Attributes field must be clear for pad files.
This restriction is because if the FFS_ATTRIB_TAIL_PRESENT bit were set, it would not be
possible to reclaim the free space from the pad file (see Reclaiming Pad Free Space). Because the
file is free space, an extended check of the file is simply a check for any nonfree data.

Firmware File System Specification Draft for Review

34 September 2003 Version 0.9

Volume Top File

EFI_FFS_VOLUME_TOP_FILE_GUID

Summary
A Volume Top File (VTF) is a file that must be located such that the last byte of the file is also the
last byte of the firmware volume. Regardless of the file type, a VTF must have the file name GUID
of EFI_FFS_VOLUME_TOP_FILE_GUID as defined below.

GUID
// {1BA0062E-C779-4582-8566-336AE8F78F09}

#define EFI_FFS_VOLUME_TOP_FILE_GUID \
{ 0x1BA0062E, 0xC779, 0x4582, 0x85, 0x66, 0x33, 0x6A, \

0xE8, 0xF7, 0x8F, 0x9 };

Draft for Review

Version 0.9 September 2003 35

4
Pseudo Code

FFS Initialization
The algorithm below describes a method of FFS initialization that ensures FFS file corruption can
be detected regardless of the cause.

The State byte of each file must be correctly managed to ensure the integrity of the file system is
not compromised in the event of a power failure during any FFS operation. It is expected that an
FFS driver will produce an instance of the Firmware Volume Protocol and that all normal file
operations will take place in that context. All file operations must follow all the creation, update,
and deletion rules described in this specification to avoid file system corruption. See the Intel®
Platform Innovation Framework for EFI Firmware Volume Specification for the definition of the
Firmware Volume Protocol.

The following FvCheck() pseudo code must be executed during FFS initialization to avoid file
system corruption. If at any point a failure condition is reached, then the firmware volume is
corrupted and a crisis recovery is initiated.

// Firmware volume initialization entry point – returns TRUE
// if FFS driver can use this firmware volume.
BOOLEAN FvCheck(Fv)
{

// first check out firmware volume header
if (FvHeaderCheck(Fv) == FALSE) {

FAILURE();// corrupted firmware volume header
}
if (Fv->FvFileSystemId != EFI_FIRMWARE_FILE_SYSTEM_GUID) {

return (FALSE); // This firmware volume is not
// formatted with FFS

}

// next walk files and verify the FFS is in good shape
for (FilePtr = FirstFile; Exists(Fv, FilePtr);

FilePtr = NextFile(Fv, FilePtr)) {
if (FileCheck (Fv, FilePtr) != 0) {

FAILURE(); // inconsistent file system
}

}
if (CheckFreeSpace (Fv, FilePtr) != 0) {

FAILURE();
}
return (TRUE); // this firmware volume can be used by the FFS

// driver and the file system is OK
}

Firmware File System Specification Draft for Review

36 September 2003 Version 0.9

// FvHeaderCheck – returns TRUE if FvHeader checksum is OK.
BOOLEAN FvHeaderCheck (Fv)
{

return (Checksum (Fv.FvHeader) == 0);
}

// Exists – returns TRUE if any bits are set in the file header
BOOLEAN Exists(Fv, FilePtr)
{

return (BufferErased (Fv.ErasePolarity,
FilePtr, sizeof (EFI_FIRMWARE_VOLUME_HEADER) == FALSE);

}

// BufferErased – returns TRUE if no bits are set in buffer
BOOLEAN BufferErased (ErasePolarity, BufferPtr, BufferSize)
{

UINTN Count;

if (Fv.ErasePolarity == 1) {
ErasedByte = 0xff;

} else {
ErasedByte = 0;

}
for (Count = 0; Count < BufferSize; Count++) {

if (BufferPtr[Count] != ErasedByte) {
return FALSE;

}
}
return TRUE;

}

// GetFileState – returns high bit set of state field.
UINT8 GetFileState (Fv, FilePtr) {
UINT8 FileState;
UINT8 HighBit;

FileState = FilePtr->State;
if (Fv.ErasePolarity != 0) {

FileState = ~FileState;
}
HighBit = 0x80;
while (HighBit != 0 && (HighBit & FileState) == 0) {

HighBit = HighBit >> 1;
}
return HighBit;

}

Draft for Review Pseudo Code

Version 0.9 September 2003 37

// FileCheck – returns TRUE if the file is OK
BOOLEAN FileCheck (Fv, FilePtr) {

switch (GetFileState (Fv, FilePtr)) {
case EFI_FILE_HEADER_CONSTRUCTION:

SetHeaderBit (Fv, FilePtr, EFI_FILE_HEADER_INVALID);
break;

case EFI_FILE_HEADER_VALID:
if (VerifyHeaderChecksum (FilePtr) != TRUE) {

return (FALSE);
}
SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
Break;

case EFI_FILE_DATA_VALID:
if (VerifyHeaderChecksum (FilePtr) != TRUE) {

return (FALSE);
}
if (VerifyFileChecksum (FilePtr) != TRUE) {

return (FALSE);
}
if (DuplicateFileExists (Fv, FilePtr,

EFI_FILE_DATA_VALID) != NULL) {
return (FALSE);

}
break;

case EFI_FILE_MARKED_FOR_UPDATE:
if (VerifyHeaderChecksum (FilePtr) != TRUE) {

return (FALSE);
}
if (VerifyFileChecksum (FilePtr) != TRUE) {

return (FALSE);
}
if (FilePtr->State & EFI_FILE_DATA_VALID) == 0) {

return (FALSE);
}
if (FilePtr->Type == EFI_FV_FILETYPE_FFS_PAD) {

SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
}
else {

if (DuplicateFileExists (Fv, FilePtr, EFI_FILE_DATA_VALID)) {
SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);

}
else {

if (Fv->Attributes & EFI_FVB_STICKY_WRITE) {
CopyFile (Fv, FilePtr);
SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);

}
else {

ClearHeaderBit (Fv, FilePtr, EFI_FILE_MARKED_FOR_UPDATE);
}

}
}
break;

Firmware File System Specification Draft for Review

38 September 2003 Version 0.9

case EFI_FILE_DELETED:
if (VerifyHeaderChecksum (FilePtr) != TRUE) {

return (FALSE);
}
if (VerifyFileChecksum (FilePtr) != TRUE) {

return (FALSE);
}
break;

case EFI_FILE_HEADER_INVALID:
break;

}
return (TRUE);

}

// FFS_FILE_PTR * DuplicateFileExists (Fv, FilePtr, StateBit)
// This function searches the firmware volume for another occurrence
// of the file described by FilePtr in which the duplicate files
// high state bit that is set is defined by the parameter StateBit.
// It returns a pointer to a duplicate file if it exists and NULL
// if it does not.

// CopyFile (Fv, FilePtr)
// This real purpose of this function is to clear the
// EFI_FILE_MARKED_FOR_UPDATE bit from FilePtr->State
// in firmware volumes that have EFI_FVB_STICKY_WRITE == TRUE.
// The file is copied exactly header and all, except the
// EFI_FILE_MARKED_FOR_UPDATE bit in the file header of the
// new file is clear.

// VerifyHeaderChecksum (FilePtr)
// This purpose of this function is to verify the file header
// sums to zero. See IntegrityCheck.Checksum.Header definition
// for details.

// VerifyFileChecksum (FilePtr)
// This purpose of this function is to verify the file integrity
// check. See IntegrityCheck.Checksum.File definition for details.
// It also verifies the file tail.

Draft for Review Pseudo Code

Version 0.9 September 2003 39

Pre-FFS Initialization Access to Files
The Security (SEC), Pre-EFI Initialization (PEI), and early Driver Execution Environment (DXE)
code must be able to traverse the FFS and read and execute files before a write-enabled DXE FFS
driver is initialized. Because the FFS may have inconsistencies due to a previous power failure or
other system failure, it is necessary to follow a set of rules to verify the validity of files prior to
using them. It is not incumbent on SEC, PEI, or the early read-only DXE FFS services to make any
attempt to recover or modify the file system. If any situation exists where execution cannot
continue due to file system inconsistencies, a recovery boot is initiated.

There is one inconsistency that the SEC, PEI, and early DXE code can deal with without initiating a
recovery boot. This condition is created by a power failure or other system failure that occurs
during a file update on a previous boot. Such a failure will cause two files with the same file name
GUID to exist within the firmware volume. One of them will have the
EFI_FILE_MARKED_FOR_UPDATE bit set in its State field but will be otherwise a completely
valid file. The other one may be in any state of construction up to and including
EFI_FILE_DATA_VALID. All files used prior to the initialization of the write-enabled DXE FFS
driver must be screened with this test prior to their use. If this condition is discovered, it
is permissible to initiate a recovery boot and allow the recovery DXE to complete the update.

The following pseudo code describes the method for determining which of these two files to use.
The inconsistency is corrected during the write-enabled initialization of the DXE FFS driver.

Firmware File System Specification Draft for Review

40 September 2003 Version 0.9

// Screen files to ensure we get the right one in case
// of an inconsistency.
FFS_FILE_PTR EarlyFfsUpdateCheck(FFS_FILE_PTR * FilePtr) {

FFS_FILE_PTR * FilePtr2;

if (VerifyHeaderChecksum (FilePtr) != TRUE) {
return (FALSE);

}
if (VerifyFileChecksum (FilePtr) != TRUE) {

return (FALSE);
}
switch (GetFileState (Fv, FilePtr)) {

case EFI_FILE_DATA_VALID:
return (FilePtr);
break;

case EFI_FILE_MARKED_FOR_UPDATE:
FilePtr2 = DuplicateFileExists (Fv, FilePtr,

EFI_FILE_DATA_VALID);
if (FilePtr2 != NULL) {

if (VerifyHeaderChecksum (FilePtr) != TRUE) {
return (FALSE);

}
if (VerifyFileChecksum (FilePtr) != TRUE) {

return (FALSE);
}
return (FilePtr2);

} else {
return (FilePtr);

}
break;

}
}

NOTE
There is no check for duplicate files once a file in the EFI_FILE_DATA_VALID state is located.
The condition where two files in a single firmware volume have the same file name GUID and are
both in the EFI_FILE_DATA_VALID state cannot occur if the creation and update rules that are
defined in this specification are followed.

	Intel® Platform Innovation Framework for EFI Firmware File System Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Target Audience
	Conventions Used in This Document
	Data Structure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	Introduction
	File Format
	Overview
	FFS GUID
	FFS File Image

	FFS File Integrity and State
	Detecting FFS File Corruption
	File State Transitions
	Overview
	Initial State
	Creating a File
	Deleting a File
	Updating a File

	FFS-Defined File Types
	Overview
	Pad Files (File Type 0xF0)
	Pad File Overview
	Reclaiming a Pad File’s Free Space
	Updating a File Using a Pad File’s Free Space
	Updating Multiple Files in Lockstep

	Volume Top File

	3. Code Definitions
	Introduction
	File Format
	EFI_FIRMWARE_FILE_SYSTEM_GUID
	EFI_FFS_FILE_HEADER
	EFI_FFS_FILE_TAIL

	Pad Files
	EFI_FV_FILETYPE_FFS_PAD

	Volume Top File
	EFI_FFS_VOLUME_TOP_FILE_GUID

	Pseudo Code
	FFS Initialization
	Pre-FFS Initialization Access to Files

