
  

 

Intel® Platform Innovation Framework 
for EFI  

Firmware Volume Block 
Specification 

 
 
 
 
 
 

Version 0.9 
September 16, 2003 



Firmware Volume Block Specification   

ii September 2003 Version 0.9 

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY 
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY 
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.  Except for a limited copyright license 
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual 
property rights is granted herein. 

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information 
in this specification.  Intel does not warrant or represent that such implementation(s) will not infringe such rights. 

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” 
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising 
from future changes to them.  

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design 
products based on this document. 

Intel, the Intel logo, Itanium, and Intel XScale are trademarks or registered trademarks of Intel Corporation or its subsidiaries 
in the United States and other countries. 

* Other names and brands may be claimed as the property of others. 

Copyright  2001–2003, Intel Corporation. 

Intel order number xxxxxx-001 

 
 



  

Version 0.9 September 2003 iii 

Revision History 
Revision Revision History Date 

0.9 First public release. 9/16/03 

   

 



Firmware Volume Block Specification   

iv September 2003 Version 0.9 

 
 



  

Version 0.9 September 2003 v 

Contents 

1 Introduction .......................................................................................................7 
Overview ............................................................................................................................... 7 
Target Audience .................................................................................................................... 7 
Conventions Used in This Document .................................................................................... 8 

Data Structure Descriptions .......................................................................................... 8 
Protocol Descriptions .................................................................................................... 9 
Procedure Descriptions ................................................................................................ 9 
Pseudo-Code Conventions ......................................................................................... 10 
Typographic Conventions ........................................................................................... 10 

2 Design Discussion ......................................................................................... 13 
Firmware Volume Block Protocol ......................................................................................... 13 
Firmware Volume HOB ....................................................................................................... 13 

3 Code Definitions ............................................................................................. 15 
Introduction ......................................................................................................................... 15 
Firmware Volume Header ................................................................................................... 16 

EFI_FIRMWARE_VOLUME_HEADER ....................................................................... 16 
Firmware Volume Block Protocol ......................................................................................... 20 

EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL .................................................... 20 
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. GetAttributes() ........................... 22 
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. SetAttributes() ........................... 23 
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. GetPhysicalAddress() ................ 24 
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. GetBlockSize() .......................... 25 
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. Read() ....................................... 26 
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. Write() ....................................... 28 
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. EraseBlocks() ............................ 30 

 



Firmware Volume Block Specification   

vi September 2003 Version 0.9 

 



  

Version 0.9 September 2003 7 

1 
Introduction 

Overview 
This specification defines a format for storing firmware volumes in block access type devices for an 
implementation of the Intel® Platform Innovation Framework for EFI (hereafter referred to as the 
“Framework”).  It is designed to scale to many types of block devices.  This specification does the 
following: 
• Defines a firmware volume 
• Describes how to implement the Firmware Volume Block Protocol and firmware volume 

Hand-Off Blocks (HOBs) 
• Defines a firmware volume header structure and a block-oriented protocol interface that are 

architecturally required by the Intel® Platform Innovation Framework for EFI Architecture 
Specification  

Target Audience 
This document is intended for the following readers: 
• Independent hardware vendors (IHVs) and original equipment manufacturers (OEMs) who will 

be implementing firmware components that are stored in firmware volumes 
• BIOS developers, either those who create general-purpose BIOS and other firmware products 

or those who modify these products for use in Intel® architecture–based products 



Firmware Volume Block Specification   

8 September 2003 Version 0.9 

Conventions Used in This Document 
This document uses the typographic and illustrative conventions described below. 

Data Structure Descriptions 
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines.  This 
distinction means that the low-order byte of a multibyte data item in memory is at the lowest 
address, while the high-order byte is at the highest address.  Processors of the Intel® Itanium® 
processor family may be configured for both “little endian” and “big endian” operation.  All 
implementations designed to conform to this specification will use “little endian” operation. 
In some memory layout descriptions, certain fields are marked reserved.  Software must initialize 
such fields to zero and ignore them when read.  On an update operation, software must preserve 
any reserved field.   
The data structures described in this document generally have the following format: 

STRUCTURE NAME: The formal name of the data structure. 

Summary:   A brief description of the data structure. 

Prototype: A “C-style” type declaration for the data structure. 

Parameters:   A brief description of each field in the data structure prototype. 

Description: A description of the functionality provided by the data structure, 
including any limitations and caveats of which the caller should 
be aware. 

Related Definitions: The type declarations and constants that are used only by 
this data structure. 



  Introduction 

Version 0.9 September 2003 9 

Protocol Descriptions 
The protocols described in this document generally have the following format: 

Protocol Name: The formal name of the protocol interface. 

Summary:   A brief description of the protocol interface. 

GUID:   The 128-bit Globally Unique Identifier (GUID) for the protocol 
interface. 

Protocol Interface Structure: 
A “C-style” data structure definition containing the procedures 
and data fields produced by this protocol interface. 

Parameters:   A brief description of each field in the protocol interface 
structure. 

Description: A description of the functionality provided by the interface, 
including any limitations and caveats of which the caller should 
be aware. 

Related Definitions: The type declarations and constants that are used in the protocol 
interface structure or any of its procedures. 

Procedure Descriptions 
The procedures described in this document generally have the following format: 

ProcedureName(): The formal name of the procedure. 

Summary:   A brief description of the procedure. 

Prototype: A “C-style” procedure header defining the calling sequence. 

Parameters:   A brief description of each field in the procedure prototype. 

Description: A description of the functionality provided by the interface, 
including any limitations and caveats of which the caller should 
be aware. 

Related Definitions: The type declarations and constants that are used only by 
this procedure. 

Status Codes Returned: A description of any codes returned by the interface.  The 
procedure is required to implement any status codes listed in this 
table.  Additional error codes may be returned, but they will not 
be tested by standard compliance tests, and any software that 
uses the procedure cannot depend on any of the extended error 
codes that an implementation may provide. 



Firmware Volume Block Specification   

10 September 2003 Version 0.9 

Pseudo-Code Conventions 
Pseudo code is presented to describe algorithms in a more concise form.  None of the algorithms in 
this document are intended to be compiled directly.  The code is presented at a level corresponding 
to the surrounding text.   
In describing variables, a list is an unordered collection of homogeneous objects.  A queue is an 
ordered list of homogeneous objects.  Unless otherwise noted, the ordering is assumed to be First In 
First Out (FIFO). 
Pseudo code is presented in a C-like format, using C conventions where appropriate.  The coding 
style, particularly the indentation style, is used for readability and does not necessarily comply with 
an implementation of the Extensible Firmware Interface Specification. 

Typographic Conventions 
This document uses the typographic and illustrative conventions described below: 
Plain text The normal text typeface is used for the vast majority of the descriptive 

text in a specification. 
Plain text (blue) In the online help version of this specification, any plain text that is 

underlined and in blue indicates an active link to the cross-reference. 
Click on the word to follow the hyperlink. Note that these links are not 
active in the PDF of the specification. 

Bold In text, a Bold typeface identifies a processor register name.  In other 
instances, a Bold typeface can be used as a running head within a 
paragraph. 

Italic In text, an Italic typeface can be used as emphasis to introduce a new 
term or to indicate a manual or specification name. 

BOLD Monospace Computer code, example code segments, and all prototype code 
segments use a BOLD Monospace typeface with a dark red color.  
These code listings normally appear in one or more separate paragraphs, 
though words or segments can also be embedded in a normal text 
paragraph.   

Bold Monospace  In the online help version of this specification, words in a 
Bold Monospace typeface that is underlined and in blue indicate an 
active hyperlink to the code definition for that function or type definition. 
 Click on the word to follow the hyperlink. Note that these links are not 
active in the PDF of the specification. Also, these inactive links in the 
PDF may instead have a Bold Monospace appearance that is 
underlined but in dark red. Again, these links are not active in the PDF of 
the specification. 

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder 
names for variable information that must be supplied (i.e., arguments). 

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red 
color but is not bold or italicized indicate pseudo code or example code. 
These code segments typically occur in one or more separate paragraphs. 



  Introduction 

Version 0.9 September 2003 11 

See the master Framework glossary in the Framework Interoperability and Component 
Specifications help system for definitions of terms and abbreviations that are used in this document 
or that might be useful in understanding the descriptions presented in this document. 
See the master Framework references in the Interoperability and Component Specifications help 
system for a complete list of the additional documents and specifications that are required or 
suggested for interpreting the information presented in this document. 
The Framework Interoperability and Component Specifications help system is available at the 
following URL: 
http://www.intel.com/technology/framework/spec.htm 

http://www.intel.com/technology/framework/spec.htm�


Firmware Volume Block Specification   

12 September 2003 Version 0.9 

 



  

Version 0.9 September 2003 13 

2 
Design Discussion 

Firmware Volume Block Protocol 
The Firmware Volume Block Protocol provides block-level access to a firmware volume. Although 
the Firmware Volume Block Protocol represents an abstraction of the firmware device, it is not 
intended to be a generic and primitive abstraction to the firmware device. An implementation may 
choose to implement an arbitrary number of abstractions beneath the Firmware Volume Block 
driver as required to satisfy platform requirements. 
The Firmware Volume Block Protocol provides the following: 
• Byte-level read/write functionality  
• Block-level erase functionality 
It further exposes device-hardening features, such as may be required to protect the firmware from 
unwanted overwriting and/or erasure. 
It is useful to layer a file system driver on top of the Firmware Volume Block Protocol. This file 
system driver produces the Firmware Volume Protocol, which provides file-level access to a 
firmware volume. The Firmware Volume Protocol abstracts the file system that is used to format 
the firmware volume and the hardware device-hardening features that may be present.  
For more information, including information on the Firmware Volume Protocol, see the Intel® 
Platform Innovation Framework for EFI Firmware Volume Specification.  

Firmware Volume HOB 
The Pre-EEFI Initialization (PEI) phase must produce a firmware volume Hand-Off Block (HOB) 
for each firmware volume.  The firmware volume HOB details the location of firmware volumes 
that contain firmware files.  It includes a base address and length.  In particular, the DXE 
Foundation will use these HOBs to discover drivers to execute and the DXE Initial Program Load 
(IPL) PEIM will use this HOB to discover the location of the DXE Foundation firmware file. 
See the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for 
the definition and explanation of the firmware volume HOB. 



Firmware Volume Block Specification   

14 September 2003 Version 0.9 

 
 

 
 



  

Version 0.9 September 2003 15 

3 
Code Definitions 

Introduction 
This section contains the basic definitions for storing firmware volumes in block access type 
devices.  The following protocols and data types are defined in this section: 
• EFI_FIRMWARE_VOLUME_HEADER 
• EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL 
This section also contains the definitions for additional data types and structures that are 
subordinate to the structures in which they are called. The following types or structures can be 
found in “Related Definitions” of the parent data structure or protocol definition: 
• EFI_FVB_ATTRIBUTES  

 



Firmware Volume Block Specification   

16 September 2003 Version 0.9 

Firmware Volume Header 

EFI_FIRMWARE_VOLUME_HEADER 

Summary 
Describes the features and layout of the firmware volume.   

Prototype 

 NOTE 
The following prototype uses Backus-Naur Form (BNF) instead of a C data structure because the 
firmware volume header has a variable length, which is not possible to describe using a C data 
structure.   Memory-mapped firmware volumes must be aligned on an 8-byte boundary. 

 
FvHeader: 
     < UINT8                ZeroVector[16] > 
     < EFI_GUID             FileSystemGuid > 
     < UINT64               FvLength > 
     < UINT32               Signature > 
     < EFI_FVB_ATTRIBUTES   Attributes > 
     < UINT16               HeaderLength > 
     < UINT16               Checksum > 
     < UINT8                Reserved[3] > 
     < UINT8                Revision > 
     FvBlockMap  
 
FvBlockMap: 
     FvBlockMapEntry 
     { FvBlockMapEntry } 
     FvBlockMapTerminator 
 
FvBlockMapEntry: 
     < UINT32 NumBlocks > 
     < UINT32 BlockLength > 
 
FvBlockMapTerminator: 
     < (UINT32) 0 >     // FvBlockMapEntry.NumBlocks = 0 
     < (UINT32) 0 >     // FvBlockMapEntry.BlockLength = 0 



  Code Definitions 

Version 0.9 September 2003 17 

Parameters 
ZeroVector 

The first 16 bytes are reserved to allow for the reset vector of processors whose reset 
vector is at address 0 (Intel® processors based on Intel® XScale™ technology). 

FileSystemGuid 

Declares the file system with which the firmware volume is formatted. Type 
EFI_GUID is defined in InstallProtocolInterface() in the EFI 1.10 
Specification.  

FvLength 

Length in bytes of the complete firmware volume, including the header. 
Signature 

Set to {'_','F','V','H'}. 
Attributes 

Declares capabilities and power-on defaults for the firmware volume.  Current state is 
determined using the GetAttributes() function and is not maintained in the 
Attributes field of the firmware volume header.  Type 
EFI_FVB_ATTRIBUTES is defined in “Related Definitions” below. 

HeaderLength 

Length in bytes of the complete firmware volume header. 
Checksum 

A 16-bit checksum of the firmware volume header.  A valid header sums to zero. 
Reserved 

In this version of the specification, this field must always be set to zero. 
Revision 

Set to 1.  Future versions of this specification may define new header fields and will 
increment the Revision field accordingly. 

FvBlockMap[] 

An array of run-length encoded FvBlockMapEntry structures.  The array is 
terminated with an entry of {0,0}. 

FvBlockMapEntry.NumBlocks 

The number of blocks in the run. 
FvBlockMapEntry.BlockLength 

The length of each block in the run. 



Firmware Volume Block Specification   

18 September 2003 Version 0.9 

Description 
A firmware volume based on a block device begins with a header that describes the features and 
layout of the firmware volume.  This header includes a description of the capabilities, state, and 
block map of the device. 
The block map is a run-length-encoded array of logical block definitions.  This design allows a 
reasonable mechanism of describing the block layout of typical firmware devices.  Each block 
can be referenced by its logical block address (LBA).  The LBA is a zero-based enumeration 
of all of the blocks—i.e., LBA 0 is the first block, LBA 1 is the second block, and LBA n is the (n-
1) device. 
The header is always located at the beginning of LBA 0.   

Related Definitions 
//************************************************* 
// EFI_FVB_ATTRIBUTES 
//************************************************* 
 
typedef UINT32 EFI_FVB_ATTRIBUTES 
 
 
// Attributes bit definitions 
 
#define EFI_FVB_READ_DISABLED_CAP     0x00000001 
#define EFI_FVB_READ_ENABLED_CAP      0x00000002 
#define EFI_FVB_READ_STATUS           0x00000004 
 
#define EFI_FVB_WRITE_DISABLED_CAP    0x00000008 
#define EFI_FVB_WRITE_ENABLED_CAP     0x00000010 
#define EFI_FVB_WRITE_STATUS          0x00000020 
 
#define EFI_FVB_LOCK_CAP              0x00000040 
#define EFI_FVB_LOCK_STATUS           0x00000080 
 
#define EFI_FVB_STICKY_WRITE          0x00000200 
#define EFI_FVB_MEMORY_MAPPED         0x00000400 
#define EFI_FVB_ERASE_POLARITY        0x00000800 
 
#define EFI_FVB_ALIGNMENT_CAP         0x00008000 
#define EFI_FVB_ALIGNMENT_2           0x00010000 
#define EFI_FVB_ALIGNMENT_4           0x00020000 
#define EFI_FVB_ALIGNMENT_8           0x00040000 
#define EFI_FVB_ALIGNMENT_16          0x00080000 
#define EFI_FVB_ALIGNMENT_32          0x00100000 
#define EFI_FVB_ALIGNMENT_64          0x00200000 
#define EFI_FVB_ALIGNMENT_128         0x00400000 
#define EFI_FVB_ALIGNMENT_256         0x00800000 
#define EFI_FVB_ALIGNMENT_512         0x01000000 
#define EFI_FVB_ALIGNMENT_1K          0x02000000    



  Code Definitions 

Version 0.9 September 2003 19 

#define EFI_FVB_ALIGNMENT_2K          0x04000000 
#define EFI_FVB_ALIGNMENT_4K          0x08000000 
#define EFI_FVB_ALIGNMENT_8K          0x10000000 
#define EFI_FVB_ALIGNMENT_16K         0x20000000 
#define EFI_FVB_ALIGNMENT_32K         0x40000000 
#define EFI_FVB_ALIGNMENT_64K         0x80000000 
 

Following is a description of the fields in the above definition: 
 

EFI_FVB_READ_DISABLED_CAP TRUE if reads from the firmware volume may be disabled. 

EFI_FVB_READ_ENABLED_CAP TRUE if reads from the firmware volume may be enabled. 

EFI_FVB_READ_STATUS TRUE if reads from the firmware volume are currently 
enabled. 

EFI_FVB_WRITE_DISABLED_CAP TRUE if writes to the firmware volume may be disabled. 

EFI_FVB_WRITE_ENABLED_CAP TRUE if writes to the firmware volume may be enabled. 

EFI_FVB_WRITE_STATUS TRUE if writes to the firmware volume are currently 
enabled. 

EFI_FVB_LOCK_CAP TRUE if firmware volume attributes may be locked down. 

EFI_FVB_LOCK_STATUS TRUE if firmware volume attributes are currently locked 
down. 

EFI_FVB_STICKY_WRITE TRUE if a block erase is required to transition bits from 
(NOT)EFI_FVB_ERASE_POLARITY to 
EFI_FVB_ERASE_POLARITY.  That is to say, after 
erasure a write may negate a bit in the 
EFI_FVB_ERASE_POLARITY state, but a write 
cannot flip it back again.  A block erase cycle is required to 
transition bits from the 
(NOT)EFI_FVB_ERASE_POLARITY state back to 
the EFI_FVB_ERASE_POLARITY state.  See the 
Firmware Volume Block Protocol. 

EFI_FVB_MEMORY_MAPPED TRUE if firmware volume is memory mapped. 

EFI_FVB_ERASE_POLARITY Value of all bits after erasure.  See the Firmware Volume 
Block Protocol. 

EFI_FVB_ALIGNMENT_CAP TRUE if firmware volume supports alignment attributes for 
files.  If EFI_FVB_ALIGNMENT_CAP is FALSE, then 
all EFI_FVB_ALIGNMENT_{alignment 
value} bits must be zero. 

EFI_FVB_ALIGNMENT_{alignment_value} Each if these bits indicates whether or not the firmware 
volume supports the alignment_value.  TRUE indicates the 
alignment_value is supported. 

          

All other EFI_FVB_ATTRIBUTES bits are reserved and must be zero. 



Firmware Volume Block Specification   

20 September 2003 Version 0.9 

Firmware Volume Block Protocol 

EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL 

Summary 
This protocol provides control over block-oriented firmware devices.  Typically, the FFS (or an 
alternate file system) driver consumes the Firmware Volume Block Protocol and produces the 
Firmware Volume Protocol.  

GUID 
// 0xDE28BC59-6228-41BD-BDF6-A3B9ADB58DA1 
 
#define FW_VOLUME_BLOCK_PROTOCOL_GUID \ 
{ 0xDE28BC59, 0x6228, 0x41BD, 0xBD, 0xF6, 0xA3, 0xB9, \ 
  0xAD,0xB5, 0x8D, 0xA1 } 

Protocol Interface Structure 
typedef { 
  EFI_FVB_GET_ATTRIBUTES              GetAttributes; 
  EFI_FVB_SET_ATTRIBUTES              SetAttributes; 
  EFI_FVB_GET_PHYSICAL_ADDRESS        GetPhysicalAddress; 
  EFI_FVB_GET_BLOCK_SIZE              GetBlockSize; 
  EFI_FVB_READ                        Read; 
  EFI_FVB_WRITE                       Write; 
  EFI_FVB_ERASE_BLOCKS                EraseBlocks; 
  EFI_HANDLE                          ParentHandle; 
} EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL; 

Parameters 
GetAttributes 

Retrieves the current volume attributes. See the GetAttributes() function 
description. 

SetAttributes 

Sets the current volume attributes. See the SetAttributes() function 
description. 

GetPhysicalAddress 

Retrieves the memory-mapped address of the firmware volume. See the 
GetPhysicalAddress() function description. 

GetBlockSize 

Retrieves the size for a specific block.  Also returns the number of consecutive 
similarly sized blocks. See the GetBlockSize() function description. 



  Code Definitions 

Version 0.9 September 2003 21 

Read 

Reads n bytes into a buffer from the firmware volume hardware. See the Read() 
function description. 

Write 

Writes n bytes from a buffer into the firmware volume hardware. See the Write() 
function description. 

EraseBlocks 

Erases specified block(s) and sets all values as indicated by the 
EFI_FVB_ERASE_POLARITY bit. See the EraseBlocks() function 
description. Type EFI_FVB_ERASE_POLARITY is defined in 
EFI_FIRMWARE_VOLUME_HEADER. 

ParentHandle 

Handle of the parent firmware volume. Type EFI_HANDLE is defined in 
InstallProtocolInterface() in the EFI 1.10 Specification. 

Description 
The Firmware Volume Block Protocol is the low-level interface to a firmware volume.  File-level 
access to a firmware volume should not be done using the Firmware Volume Block Protocol.  
Normal access to a firmware volume must use the Firmware Volume Protocol.  Typically, only the 
file system driver that produces the Firmware Volume Protocol will bind to the Firmware Volume 
Block Protocol.  
See the Intel® Platform Innovation Framework for EFI Firmware Volume Specification for more 
information on the Firmware Volume Protocol. 
 
   



Firmware Volume Block Specification   

22 September 2003 Version 0.9 

EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. GetAttributes() 

Summary 
Returns the attributes and current settings of the firmware volume. 

Prototype 
EFI_STATUS 
(EFIAPI * EFI_FVB_GET_ATTRIBUTES) ( 
  IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL   *This, 
  OUT EFI_FVB_ATTRIBUTES                  *Attributes 
  ); 

Parameters 
This 

Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance. 
Attributes 
Pointer to EFI_FVB_ATTRIBUTES in which the attributes and current settings are 
returned. Type EFI_FVB_ATTRIBUTES is defined in 
EFI_FIRMWARE_VOLUME_HEADER. 

Description 
The GetAttributes() function retrieves the attributes and current settings of the block. 

Status Codes Returned 
EFI_SUCCESS The firmware volume attributes were returned. 

 

 
 



  Code Definitions 

Version 0.9 September 2003 23 

EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. SetAttributes() 

Summary 
Modifies the current settings of the firmware volume according to the input parameter. 

Prototype 
EFI_STATUS 
(EFIAPI * EFI_FVB_SET_ATTRIBUTES) ( 
  IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL   *This, 
  IN OUT EFI_FVB_ATTRIBUTES               *Attributes 
  ); 

Parameters 
This 

Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance. 
Attributes 

On input, Attributes is a pointer to EFI_FVB_ATTRIBUTES that contains the 
desired firmware volume settings.  On successful return, it contains the new settings 
of the firmware volume. Type EFI_FVB_ATTRIBUTES is defined in 
EFI_FIRMWARE_VOLUME_HEADER. 

Description 
The SetAttributes() function sets configurable firmware volume attributes and returns 
the new settings of the firmware volume. 

Status Codes Returned 
EFI_SUCCESS The firmware volume attributes were returned. 

EFI_INVALID_PARAMETER The attributes requested are in conflict with the capabilities as 
declared in the firmware volume header. 

 

 
 



Firmware Volume Block Specification   

24 September 2003 Version 0.9 

EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. GetPhysicalAddress() 

Summary 
Retrieves the physical address of a memory-mapped firmware volume. 

Prototype 
EFI_STATUS 
(EFIAPI * EFI_FVB_GET_PHYSICAL_ADDRESS) ( 
  IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL  *This, 
  OUT EFI_PHYSICAL_ADDRESS               *Address 
  ); 

Parameters 
This 

Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance. 
Address 

Pointer to a caller-allocated EFI_PHYSICAL_ADDRESS that, on successful return 
from GetPhysicalAddress(), contains the base address of the firmware 
volume. Type EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in 
the EFI 1.10 Specification. 

Description 
The GetPhysicalAddress() function retrieves the base address of a memory-mapped 
firmware volume.  This function should be called only for memory-mapped firmware volumes. 

Status Codes Returned 
EFI_SUCCESS The firmware volume base address is returned. 

EFI_NOT_SUPPORTED The firmware volume is not memory mapped. 

 



  Code Definitions 

Version 0.9 September 2003 25 

EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. GetBlockSize() 

Summary 
Retrieves the size in bytes of a specific block within a firmware volume. 

Prototype 
EFI_STATUS 
(EFIAPI * EFI_FVB_GET_BLOCK_SIZE) ( 
  IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL  *This, 
  IN EFI_LBA                             Lba, 
  OUT UINTN                              *BlockSize, 
  OUT UINTN                              *NumberOfBlocks 
  ); 

Parameters 
This 

Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance. 
Lba 

Indicates the block for which to return the size. Type EFI_LBA is defined in the 
BLOCK_IO Protocol (section 11.6) in the EFI 1.10 Specification.  

BlockSize 

Pointer to a caller-allocated UINTN in which the size of the block is returned. 
NumberOfBlocks 

Pointer to a caller-allocated UINTN in which the number of consecutive blocks, 
starting with Lba, is returned. All blocks in this range have a size of BlockSize. 

Description 
The GetBlockSize() function retrieves the size of the requested block.  It also returns the 
number of additional blocks with the identical size.  The GetBlockSize() function is used to 
retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER). 

Status Codes Returned 
EFI_SUCCESS The firmware volume base address is returned. 

EFI_INVALID_PARAMETER The requested LBA is out of range. 

 



Firmware Volume Block Specification   

26 September 2003 Version 0.9 

EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. Read() 

Summary 
Reads the specified number of bytes into a buffer from the specified block. 

Prototype 
EFI_STATUS 
(EFIAPI *EFI_FVB_READ) ( 
  IN  EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL  *This, 
  IN  EFI_LBA                             Lba, 
  IN  UINTN                               Offset, 
  IN  OUT UINTN                           *NumBytes, 
  OUT UINT8                               *Buffer, 
  ); 

Parameters 
This 

Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance. 
Lba 

The starting logical block index from which to read. Type EFI_LBA is defined in the 
BLOCK_IO Protocol (section 11.6) in the EFI 1.10 Specification.   

Offset 

Offset into the block at which to begin reading.  
NumBytes 

Pointer to a UINTN.  At entry, *NumBytes contains the total size of the buffer.  At 
exit, *NumBytes contains the total number of bytes read. 

Buffer 

Pointer to a caller-allocated buffer that will be used to hold the data that is read.  

Description 
The Read() function reads the requested number of bytes from the requested block and stores 
them in the provided buffer.  
Implementations should be mindful that the firmware volume might be in the ReadDisabled 
state.  If it is in this state, the Read() function must return the status code 
EFI_ACCESS_DENIED without modifying the contents of the buffer. 
The Read() function must also prevent spanning block boundaries.  If a read is requested that 
would span a block boundary, the read must read up to the boundary but not beyond.  The output 
parameter NumBytes must be set to correctly indicate the number of bytes actually read.  The 
caller must be aware that a read may be partially completed. 



  Code Definitions 

Version 0.9 September 2003 27 

Status Codes Returned 
EFI_SUCCESS The firmware volume was read successfully and contents are 

in Buffer. 

EFI_BAD_BUFFER_SIZE Read attempted across an LBA boundary.  On output, NumBytes 
contains the total number of bytes returned in Buffer. 

EFI_ACCESS_DENIED The firmware volume is in the ReadDisabled state. 

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be read. 

 

 
 



Firmware Volume Block Specification   

28 September 2003 Version 0.9 

EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. Write() 

Summary 
Writes the specified number of bytes from the input buffer to the block. 

Prototype 
EFI_STATUS 
(EFIAPI * EFI_FVB_WRITE) ( 
  IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL   *This, 
  IN EFI_LBA                              Lba, 
  IN UINTN                                Offset, 
  IN OUT UINTN                            *NumBytes, 
  IN UINT8                                *Buffer 
  ); 

Parameters 
This 

Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance. 
Lba 

The starting logical block index to write to. Type EFI_LBA is defined in the 
BLOCK_IO Protocol (section 11.6) in the EFI 1.10 Specification.     

Offset 

Offset into the block at which to begin writing.  
NumBytes 

Pointer to a UINTN.  At entry, *NumBytes contains the total size of the buffer.  At 
exit, *NumBytes contains the total number of bytes actually written. 

Buffer 

Pointer to a caller-allocated buffer that contains the source for the write.  

Description 
The Write() function writes the specified number of bytes from the provided buffer to the 
specified block and offset.  
If the firmware volume is sticky write, the caller must ensure that all the bits of the specified range 
to write are in the EFI_FVB_ERASE_POLARITY state before calling the Write() function, or 
else the result will be unpredictable.  This unpredictability arises because, for a sticky-write 
firmware volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY state but it 
cannot flip it back again. In general, before calling the Write() function, the caller should call the 
EraseBlocks() function first to erase the specified block to write. A block erase cycle will 
transition bits from the (NOT)EFI_FVB_ERASE_POLARITY state back to the 
EFI_FVB_ERASE_POLARITY state. 



  Code Definitions 

Version 0.9 September 2003 29 

Implementations should be mindful that the firmware volume might be in the WriteDisabled 
state.  If it is in this state, the Write() function must return the status code 
EFI_ACCESS_DENIED without modifying the contents of the firmware volume. 
The Write() function must also prevent spanning block boundaries. If a write is requested 
that spans a block boundary, the write must store up to the boundary but not beyond. The output 
parameter NumBytes must be set to correctly indicate the number of bytes actually written. 
The caller must be aware that a write may be partially completed. 
All writes, partial or otherwise, must be fully flushed to the hardware before the Write() 
service returns.  

Status Codes Returned 
EFI_SUCCESS The firmware volume was written successfully. 

EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary.  On output, 
NumBytes contains the total number of bytes actually written. 

EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state. 

EFI_DEVICE_ERROR The block device is malfunctioning and could not be written. 

 



Firmware Volume Block Specification   

30 September 2003 Version 0.9 

EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. EraseBlocks() 

Summary 
Erases and initializes a firmware volume block. 

Prototype 
EFI_STATUS 
(EFIAPI * EFI_FVB_ERASE_BLOCKS) ( 
  IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL  *This, 
  … 
  ); 

Parameters 
This 

Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance. 
… 

The variable argument list is a list of tuples.  Each tuple describes a range of LBAs to 
erase and consists of the following: 
• An EFI_LBA that indicates the starting LBA  

• A UINTN that indicates the number of blocks to erase 
The list is terminated with an EFI_LBA_LIST_TERMINATOR. Type 
EFI_LBA_LIST_TERMINATOR is defined in “Related Definitions” below. 
For example, the following indicates that two ranges of blocks (5–7 and 10–11) are to 
be erased:  
EraseBlocks (This, 5, 3, 10, 2, EFI_LBA_LIST_TERMINATOR);  

Description 
The EraseBlocks() function erases one or more blocks as denoted by the variable argument 
list.  
The entire parameter list of blocks must be verified before erasing any blocks. If a block is 
requested that does not exist within the associated firmware volume (it has a larger index than the 
last block of the firmware volume), the EraseBlocks() function must return the status code 
EFI_INVALID_PARAMETER without modifying the contents of the firmware volume. 
Implementations should be mindful that the firmware volume might be in the WriteDisabled 
state.  If it is in this state, the EraseBlocks() function must return the status code 
EFI_ACCESS_DENIED without modifying the contents of the firmware volume. 
All calls to EraseBlocks() must be fully flushed to the hardware before the EraseBlocks() 
service returns.  



  Code Definitions 

Version 0.9 September 2003 31 

Related Definitions 
//************************************************* 
// EFI_LBA_LIST_TERMINATOR 
//************************************************* 
 
#define EFI_LBA_LIST_TERMINATOR 0xFFFFFFFFFFFFFFFF 

Status Codes Returned 
EFI_SUCCESS The erase request was successfully completed. 

EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state. 

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be 
written.  The firmware device may have been partially erased. 

EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable argument list do not 
exist in the firmware volume. 

 
 


	1 Introduction
	Overview
	Target Audience
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions


	2 Design Discussion
	Firmware Volume Block Protocol
	Firmware Volume HOB

	3 Code Definitions
	Introduction
	Firmware Volume Header
	EFI_FIRMWARE_VOLUME_HEADER

	Firmware Volume Block Protocol
	EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL
	EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. GetAttributes()
	EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. SetAttributes()
	EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. GetPhysicalAddress()
	EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. GetBlockSize()
	EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. Read()
	EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. Write()
	EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. EraseBlocks()



